K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{2^8.7^4}{2^5.49.8}=\frac{256.2401}{32.49.8}=\frac{614656}{12544}\)

\(=49\)

Có sai thì bỏ qua

Chúc bn hok tốt~

4 tháng 11 2019

\(\frac{2^8\cdot7^4}{2^5\cdot49\cdot8}\)\(=\frac{2^8\cdot7^4}{2^5\cdot7^2\cdot2^3}=\frac{2^8\cdot7^4}{2^8\cdot7^2}=7^2=49\)

Vậy....

Học tốt

1 tháng 9 2017

Số cây cam là:
120 : ( 2 + 3 ) x 2 = 48 (cây)
Số cây xoài là:
( 1 + 5 ) = 20 ( cây )
Số cây chanh là:
120 - ( 48 + 20 ) = 52 ( cây )
               Đáp số : cam : 48 cây
                            xoài : 20 cây
                            chanh : 52 cây.

ai trên 10 điểm thì mình nha

1 tháng 9 2017

52  cây chanh

22 tháng 1 2017

\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3+25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)

\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3+5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)

\(=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3\left(1+7\right)}{5^9.7^3\left(1+2^3\right)}\)

\(=\frac{2}{12}-\frac{5.8}{9}=\frac{1}{6}-\frac{40}{9}=\frac{-77}{18}\)

b ) 3n+2 - 2n+2 + 3n - 2n

= ( 3n+2 + 3n ) - ( 2n+2 + 2n )

= 3n ( 32 + 1 ) - 2n ( 22 + 1 )

= 3n.10 - 2n-1.2.5

= 3n.10 - 2n-1.10

= ( 3n - 2n-1 ).10 chia hết cho 10 ( đpcm )

13 tháng 11 2016

help me

25 tháng 4 2017

sao nhiều dữ vậy

4 tháng 7 2019

:V Làm sai hết rồi sai ngay từ bước đầu tiên.

\(\frac{1}{3.4}-\frac{1}{4.5}-\frac{1}{5.6}-....-\frac{1}{9.10}\)

\(=\frac{1}{3.4}-\left(\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{9.10}\right)\)

\(=\frac{1}{12}-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{9}-\frac{1}{10}\right)\)

\(=\frac{1}{12}-\left(\frac{1}{4}-\frac{1}{10}\right)\)

\(=\frac{1}{12}-\frac{3}{20}\)

\(=\frac{-11}{12}\)

3 tháng 7 2019

\(\frac{1}{3.4}-\frac{1}{4.5}-...-\frac{1}{9.10}\)

\(-\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)

\(-\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(-\left(\frac{1}{3}-\frac{1}{10}\right)\)

\(-\frac{7}{30}\)

14 tháng 1 2017

a) A = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)

=> A = \(\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{\left(2^2\right)^6.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{125^3.7^3+5^9.\left(2.7\right)^3}\)

=> A = \(\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{\left(5^3\right)^3.7^3+5^9.2^3.7^3}\)

=> A = \(\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3\left(1-7\right)}{5^9.7^3+5^9.2^3.7^3}\)

=> A = \(\frac{3-1}{3\left(3+1\right)}-\frac{5^{10}.7^3.\left(-6\right)}{5^9.7^3\left(1+2^3\right)}\)

=> A = \(\frac{2}{3.4}-\frac{5.\left(-6\right)}{9}\)

A = \(\frac{1}{3.2}-\frac{-30}{9}\)

A = \(\frac{1}{6}-\frac{-10}{3}\)

A = \(\frac{1}{6}+\frac{10}{3}=\frac{1}{6}+\frac{20}{6}=\frac{21}{6}\)

=> A = \(\frac{7}{2}=3\frac{1}{2}\)

vậy A = \(3\frac{1}{2}\)

b) ta có:

3n+2-2n+2+3n-2n = (3n+2+3n) - (2n+2-2n)

= 3n(9+1) - 2n(4+1)

= 3n.10 - 2n.5

ta thấy: 3n.10 \(⋮\) 10

2n là một số chẵn mà 1 số chẵn nhân vs 5 luôn ra kết quả có tận cùng bằng 0 => 2n.5 \(⋮\) 10

=> 3n. 10 - 2n.5 \(⋮\) 10

=> 3n+2-2n+2+3n-2n \(⋮\) 10 vs mọi số nguyên dương n ( đpcm)

13 tháng 8 2015

= (72)24 x (53)10 x 28- 530 x 749 x (22)5 / 529 x (24)2 x 748

= 748 x 530 x 28 - 530 x 749 x 210 / 529x 28 x 748

= 748 x 530 x 28 x (1 - 7 x 22/529 x  28 x 748

 

=748 x 530 x 28 x (-27) / 529 x  28 x 748

=5 x (-27) = -135

=

4 tháng 8 2019

a, \(\frac{2^{15}.\left(-9\right)^4}{-6^3.8^3}=\frac{2^{15}.\left(-3.3\right)^4}{-\left(2.3\right)^3.\left(2^3\right)^3}=\frac{2^{15}.3^4.3^4}{-2^3.3^3.2^9}=\frac{2^{15}.3^8}{-2^{12}.3^3}=\frac{2^3.3^5}{-1}=-8.243=-1944\)

b, \(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}=\frac{2^{20}}{2^{12}}=\frac{1}{2^8}=\frac{1}{256}\)