\(\frac{1\cdot2016+2\cdot2015+...+2015\cdot2+2016\cdot1}{1\cdot2+2\cdot3+...+2016\cdot201...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2017

A = \(\frac{2015.2016-1}{2015.2016}\)=  \(\frac{2015.2016}{2015.2016}\)\(-\)\(\frac{1}{2015.2016}\)= 1 \(-\)\(\frac{1}{2015.2016}\)
B = \(\frac{2016.2017-1}{2016.2017}\)\(\frac{2016.2017}{2016.2017}\)\(-\)\(\frac{1}{2016.2017}\)= 1 \(-\)\(\frac{1}{2016.2017}\)
Vì \(\frac{1}{2015.2016}\)\(\frac{1}{2016.2017}\)
=> 1 \(-\)\(\frac{1}{2015.2016}\)\(1-\)\(\frac{1}{2016.2017}\)
=> A < B

30 tháng 4 2017

A=\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{2014\cdot2015\cdot2016}=\dfrac{1}{2}\cdot\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{2014\cdot2015}-\dfrac{1}{2015\cdot2016}\right)=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{2015}\cdot\dfrac{1}{2016}\right)=\dfrac{1}{4}-\dfrac{1}{2\cdot2015\cdot2016}< \dfrac{1}{4}\)

Vậy A<\(\dfrac{1}{4}\)

---bé hơn hoặc bằng tức là chỉ cần xảy ra 1 khả năng cũng thõa mãn nhé---

bài này tương tự bài trênHỏi đáp Toán

23 tháng 2 2020

Vậy \(A=\frac{8056}{2015}\)

23 tháng 2 2020

Bạn tham khảo: Câu hỏi của chipchip - Toán lớp 6 - Học toán với OnlineMath

sách 6,7,8 có 2 bài này nè. mk k bt ghi ps nên mk ko gửi đc sorry nha. Hhh

9 tháng 3 2020

a)\(A=\frac{10^{2014}+2016}{10^{2015}+2016}=>10A=\frac{10^{2015}+20160}{10^{2015}+2016}=1+\frac{18144}{10^{2015}+2016}\left(1\right)\)

\(B=\frac{10^{2015}+2016}{10^{2016}+2016}=>10B=\frac{10^{2016}+20160}{10^{2016}+2016}=1+\frac{18144}{10^{2016}+2106}\left(2\right)\)

từ 1 zà 2 

=> 10A>10B

=>A>B

30 tháng 4 2016

A\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2015}-\frac{1}{2016}\)

A=\(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

A=\(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2015}+\frac{1}{2016}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

A=\(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2015}+\frac{1}{2016}-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1008}\right)\)

A=\(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2015}+\frac{1}{2016}\)

B-A=\(\left(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)-\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2015}+\frac{1}{2016}\right)\)

B-A=1/1008