Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\frac{3}{7}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{7}-\frac{5}{17}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)
\(=\frac{3\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}{5\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}+\frac{1.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}{-7\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
\(=\frac{3}{5}+\frac{-1}{7}\)
\(=\frac{21}{35}-\frac{5}{35}\)
\(=\frac{16}{35}\)
\(A=\frac{3.\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}{5.\left(\frac{1}{7}-\frac{1}{17}-\frac{1}{37}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{7.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
\(A=\frac{3}{5}+\frac{1}{7}=\frac{21}{35}+\frac{5}{35}=\frac{26}{35}\)
a/ Vì \(x\ge3>-\frac{2}{3}\) nên giá trị biểu thức là :
\(x+\frac{2}{3}+x-3=2x-\frac{7}{3}\)
b/ Vì \(x>2>\frac{4}{3}>-\frac{2}{5}\) nên giá trị biểu thức là :
\(-\left(x+\frac{2}{5}\right)+\left(x-\frac{4}{3}\right)=-\frac{4}{3}-\frac{2}{5}=-\frac{26}{15}\)
a)
\(\begin{array}{l}\frac{2}{3} + \frac{{ - 2}}{5} + \frac{{ - 5}}{6} - \frac{{13}}{{10}}\\ = \frac{2}{3} + \frac{{ - 5}}{6} + \frac{{ - 2}}{5} - \frac{{13}}{{10}}\\ = \left( {\frac{2}{3} + \frac{{ - 5}}{6}} \right) + \left( {\frac{{ - 2}}{5} - \frac{{13}}{{10}}} \right)\\ = \left( {\frac{4}{6} + \frac{{ - 5}}{6}} \right) + \left( {\frac{{ - 4}}{{10}} - \frac{{13}}{{10}}} \right)\\ = \frac{{ - 1}}{6} + \frac{{ - 17}}{{10}}\\ = \frac{{ - 5}}{{30}} + \frac{{ - 51}}{{30}}\\ = \frac{{ - 56}}{{30}}\\ = \frac{{ - 28}}{{15}}\end{array}\)
b)
\(\begin{array}{l}\frac{{ - 3}}{7}.\frac{{ - 1}}{9} + \frac{7}{{ - 18}}.\frac{{ - 3}}{7} + \frac{5}{6}.\frac{{ - 3}}{7}\\ = \frac{{ - 3}}{7}.\left( {\frac{{ - 1}}{9} + \frac{7}{{ - 18}} + \frac{5}{6}} \right)\\ = \frac{{ - 3}}{7}.\left( {\frac{{ - 2}}{{18}} + \frac{{ - 7}}{{18}} + \frac{{15}}{{18}}} \right)\\ = \frac{{ - 3}}{7}.\frac{{ 6}}{{18}}\\ = \frac{-1}{7}\end{array}\).
\(=\frac{5\left(\frac{1}{3}+\frac{1}{8}-\frac{1}{7}\right)}{-4\left(\frac{1}{3}+\frac{1}{8}-\frac{1}{7}\right)}:\frac{2\left(\frac{1}{3}-\frac{1}{12}+\frac{3}{7}\right)}{ }\)
MÃu thứ hai sao ý
\(\frac{\frac{3}{7}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
\(=\frac{3\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{4\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{8}\right)}{5\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{8}\right)}\)
\(=\frac{3}{5}+\frac{4}{5}=\frac{7}{5}\)
Ta có: \(\frac{\frac{3}{7}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
\(=\frac{3\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{4\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{8}\right)}{5\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{8}\right)}\)
\(=\frac{3}{5}+\frac{4}{5}\)
\(=\frac{7}{5}\)
a) \(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\) \(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
\(=\frac{2}{3}+\frac{1}{11}=\frac{25}{33}\)
b) \(\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)....\left(1-\frac{10}{7}\right)=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right).\left(1-\frac{8}{7}\right).\left(1-\frac{9}{7}\right).\) \(\left(1-\frac{10}{7}\right)\) = 0
a)\(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\)
\(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{7}{12}+\frac{10}{12}-\frac{12}{12}}{\frac{60}{12}-\frac{9}{12}+\frac{4}{12}}\)
\(=\frac{2}{3}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
\(=\frac{2}{3}+\frac{1}{11}\)
\(=\frac{25}{33}\)
b)\(\left(1-\frac{1}{7}\right)\cdot\left(1-\frac{2}{7}\right)\cdot...\cdot\left(1-\frac{10}{7}\right)\)
Ta nhận thấy trong tích này có 1 thừa số là\(\left(1-\frac{7}{7}\right)=0\)nên tích trên sẽ bằng 0.
Phải là \(B=\frac{0,5-\frac{3}{17}+\frac{3}{37}}{\frac{5}{6}-\frac{5}{7}+\frac{5}{37}}+\frac{0,5-\frac{1}{3}+\frac{1}{4}-0,2}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-3,5}\) chứ nhỉ?
Nếu đúng thì phân tích như sau
\(\Leftrightarrow B=\frac{\frac{3}{6}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{6}-\frac{5}{7}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)
\(B=\frac{3\left(\frac{1}{6}-\frac{1}{17}+\frac{1}{37}\right)}{5\left(\frac{1}{6}-\frac{1}{17}+\frac{1}{37}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{7\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)}\)
\(B=\frac{3}{5}+\frac{1}{7}=\frac{16}{35}\)
\(\frac{1}{3}+\left|-\frac{5}{7}\right|\)
\(=\frac{1}{3}+\frac{5}{7}\)
\(=\frac{7}{21}+\frac{15}{21}\)
\(=\frac{22}{21}\)
\(\frac{1}{3}+\left|\frac{-5}{7}\right|=\frac{1}{3}+\frac{5}{7}\)
\(=\frac{7}{21}+\frac{15}{21}=\frac{22}{21}=1\frac{1}{21}\)