Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2002}+\frac{2003.2001}{2002}-2003\)
\(=\frac{1}{2002}+\frac{2003.3001}{2002}-\frac{2003.2002}{2002}\)
\(=\frac{1}{2002}+\frac{2003.2001-2003.2002}{2002}\)
\(=\frac{1}{2002}+\frac{-2003}{2002}=\frac{1+\left(-2003\right)}{2002}=\frac{-2002}{2002}=-1\)
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
\(P=\frac{1}{5}-\frac{2}{3}=\frac{3-10}{15}=\frac{-7}{15}\)
a, \(\left(2-\dfrac{3}{2}\right)\left(2-\dfrac{4}{3}\right)\left(2-\dfrac{5}{4}\right)\left(2-\dfrac{6}{5}\right)\)
\(=\left(\dfrac{4}{2}-\dfrac{3}{2}\right)\left(\dfrac{6}{3}-\dfrac{4}{3}\right)\left(\dfrac{8}{4}-\dfrac{5}{4}\right)\left(\dfrac{10}{5}-\dfrac{6}{5}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}\)
\(=\dfrac{1}{5}\)
b. \(\dfrac{1}{2002}+\dfrac{2003.2001}{2002}-2003\)\(=\dfrac{1}{2002}+\dfrac{2003.2001}{2002}-\dfrac{2003.2002}{2002}\) = \(\dfrac{1+2003.2001-2003.2002}{2002}\) = \(\dfrac{1+\left(2003\left(2001-2002\right)\right)}{2002}\) = \(\dfrac{1+2003.\left(-1\right)}{2002}\) = \(\dfrac{1+\left(-2003\right)}{2002}\) = \(\dfrac{-2002}{2002}=-1\)
Chúc nguyễn hồng nhung học tốt
a) ta thay 1-2002/2003= 1/2003 va 1-2003/2004=1/2004
ma 1/2003>1/2004 =>2002/2003<2003/2004
b) ta co -2002/2003<1<2005/2004
Có \(\frac{x+4}{2000}\) + \(\frac{x+3}{2001}\) = \(\frac{x+2}{2002}\) + \(\frac{x+1}{2003}\)
( \(\frac{x+4}{2000}\) + 1 ) + ( \(\frac{x+3}{2001}\) + 1 ) = ( \(\frac{x+2}{2002}\) + 1 ) + ( \(\frac{x+1}{2003}\) + 1 )
( \(\frac{x+4}{2000}\) + \(\frac{2000}{2000}\) ) + ( \(\frac{x+3}{2001}\) + \(\frac{2001}{2001}\) ) = ( \(\frac{x+2}{2002}\) + \(\frac{2002}{2002}\) ) + ( \(\frac{x+1}{2003}\) + \(\frac{2003}{2003}\) )
\(\frac{x+4+2000}{2000}\) + \(\frac{x+3+2001}{2001}\) = \(\frac{x+2+2002}{2002}\) + \(\frac{x+1+2003}{2003}\)
\(\frac{x+2004}{2000}\) + \(\frac{x+2004}{2001}\) = \(\frac{x+2004}{2002}\) + \(\frac{x+2004}{2003}\)
\(\frac{x+2004}{2000}\) + \(\frac{x+2004}{2001}\) - \(\frac{x+2004}{2002}\) - \(\frac{x+2004}{2003}\) = 0
( x + 2004 ) + ( \(\frac{1}{2000}\) + \(\frac{1}{2001}\) + \(\frac{1}{2002}\) + \(\frac{1}{2003}\) ) = 0
Mà \(\frac{1}{2000}\) + \(\frac{1}{2001}\) + \(\frac{1}{2002}\) + \(\frac{1}{2003}\) \(\ne\) 0
\(\Rightarrow\) x + 2004 = 0
\(\Rightarrow\) x = -2004
Vậy x = - 2014
Ta có :
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
Mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)
\(\Rightarrow x+2004=0\)
\(\Rightarrow x=-2004\)
Vậy ...
=>x+4/2000+1+x+3/2001+1=x+2/2002+1+x+1/2003+1
=>x+2004/2000+x+2004/2001=x+2004/2002+x+2004/2003
=>(x+2004)(1/2000+1/2001-1/2002-1/2003)=0
=>x+2004=0
=>x=-2004
\(\frac{x+2005}{2004}-\frac{x+2005}{2001}=\frac{x+2005}{2002}-\frac{x+2005}{2003}\)
\(\frac{x+2005}{2004}-\frac{x+2005}{2001}+\frac{x+2005}{2003}-\frac{x+2005}{2002}=0\)
\(\left(x+2005\right).\left(\frac{1}{2004}-\frac{1}{2001}+\frac{1}{2003}-\frac{1}{2002}\right)=0\)
=> x + 2015 = 0
=> x = -2015
Vậy x = -2015
TL :
\(\frac{x+2005}{2004}-\frac{x+2005}{2001}=\frac{x+2005}{2002}-\frac{x+2005}{2003}\)
\(\frac{x+2005}{2004}-\frac{x+2005}{2001}+\frac{x+2005}{2002}-\frac{x+2005}{2003}=0\)
Ta có : \(\left(x+2005\right).\left(\frac{1}{2004}-\frac{1}{2001}+\frac{1}{2003}-\frac{1}{2002}\right)=0\)
\(\Rightarrow x+2005=0\)
\(\Rightarrow x=-2005\)