\(F=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-\frac{3^{16}}{8}\)
T...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2020

a) Ta có F = \(\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-\frac{3^{16}}{8}\)

=> 8F = \(8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}\)

=> 8F = \(\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}\)

=> 8F = \(\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}\)

=> 8F = \(\left(3^8-1\right)\left(3^8+1\right)-3^{16}=3^{16}-1-3^{16}=-1\)

=> F = -1/8

b) Ta có G = \(\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)-\frac{2^{24}}{7}\)

=> 7G = 7(23 + 1)(26 + 1)(212 + 1) - 224

=> 7G = (23 - 1)(23 + 1)(26 + 1)(212 + 1) - 224

=> 7G = (26 - 1)(26 + 1)(212 + 1) - 224

=> 7G = (212 - 1)(212 + 1) - 224

=> 7G = 224 - 1 - 224

=> 7G = -1

=>  G = -1/7

19 tháng 10 2020

\(F=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-\frac{3^{16}}{8}\)

<=> \(\left(3^2-1\right)F=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-\left(3^2-1\right)\frac{3^{16}}{8}\)

<=> \(8F=\left(3^4-1\right)\left(3^4+1\right)\left(3^8-1\right)-3^{16}\)

<=> \(8F=\left(3^8+1\right)\left(3^8-1\right)-3^{16}\)

<=> \(8F=\left(3^{16}-1\right)-3^{16}=-1\)

<=> F = -1/8

Câu G làm tương tự

8 tháng 1 2020

1.

\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)

\(MC:12\)

Quy đồng :

\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)

\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)

\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)

\(\Leftrightarrow6x+9-3x=-4-9+16\)

\(\Leftrightarrow-7x=3\)

\(\Leftrightarrow x=\frac{-3}{7}\)

2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)

\(MC:20\)

Quy đồng :

\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)

\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)

\(\Leftrightarrow30x+15-20=15x-2\)

\(\Leftrightarrow15x=3\)

\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)

20 tháng 9 2020

áp dụng các hằng đẳng thức đáng nhớta được :

1)25x^4-4

2)4a^2-1/4

3)9x^4-y^2

4)1/4x^2-1

5)9/16x^2-4

6)1/4x^4-(5x^2)y+25y^2

7)9a^4-1

20 tháng 9 2020

bạn ơi câu 6 sai rooif 5 bình bằng 25 chứ ko phải 125 nha

11 tháng 3 2020

1) \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

<=> \(\frac{21x}{24}-\frac{100\left(x-9\right)}{24}=\frac{80x+6}{24}\)

<=> 21x - 100x + 900 = 80x + 6

<=> -79x - 80x = 6 - 900

<=> -159x = -894

<=> x = 258/53

Vậy S = {258/53}

2) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x+1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)

<=> \(\frac{3\left(4x^2+4x+1\right)}{15}-\frac{5\left(x^2+2x+1\right)}{15}=\frac{7x^2-14x-5}{15}\)

<=> 12x2 + 12x + 3 - 5x2 - 10x - 5 = 7x2 - 14x - 5

<=> 7x2 + 2x - 7x2 + 14x = -5 + 2

<=> 16x = 3

<=> x = 3/16

Vậy S  = {3/16}

11 tháng 3 2020

3) 4(3x - 2) - 3(x - 4) = 7x+  10

<=> 12x - 8 - 3x + 12 = 7x + 10

<=> 9x - 7x = 10 - 4

<=> 2x = 6

<=> x = 3

Vậy S = {3}

4) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)

<=> \(\frac{x^2+14x+40}{12}+\frac{3\left(x^2+2x-8\right)}{12}=\frac{4\left(x^2+8x-20\right)}{12}\)

<=> x2 + 14x + 40 + 3x2 + 6x - 24 = 4x2 + 32x - 80

<=> 4x2 + 20x - 4x2 - 32x = -80 - 16

<=> -12x = -96

<=> x = 8

Vậy S = {8}

31 tháng 1 2019

câu a tự quy đồng cùng  mẫu rồi làm thôi :"))

b) \(\left[x.\left(x-1\right)\right].\left[\left(x-2\right).\left(x+1\right)\right]=24\)

\(\Leftrightarrow\left(x^2-x\right).\left(x^2-x-2\right)=24\)

Đặt \(x^2-x=k\), ta có:

\(k.\left(k-2\right)=24\)

\(\Leftrightarrow k^2-2k+1=25\)

\(\Leftrightarrow\left(k-1\right)^2=5^2\Leftrightarrow\orbr{\begin{cases}k-1=5\\k-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}k=6\\k=-4\end{cases}}}\)

\(k=6\Rightarrow x^2-x=6\Rightarrow x^2-x-6=0\)

\(\Rightarrow x^2-3x+2x-6=0\Rightarrow x.\left(x-3\right)+2.\left(x-3\right)=0\)

\(\Rightarrow\left(x+2\right).\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

\(k=-4\Rightarrow x^2-x+4=0\Rightarrow x^2-x+\frac{1}{4}+\frac{15}{4}=0\Rightarrow\left(x-\frac{1}{2}\right)^2=-\frac{15}{4}\left(\text{loại}\right)\)

c)\(x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow x^4+2x^3+2x^2+4x+3x^2-12=0\)

\(\Leftrightarrow x^3.\left(x+2\right)+2x.\left(x+2\right)+3.\left(x^2-2^2\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(x^3+5x-6\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(x^3-x^2+x^2-x+6x-6\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left[x^2.\left(x-1\right)+x.\left(x-1\right)+6.\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right).\left(x-1\right).\left(x^2+x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}\text{vì }x^2+x+6>0\left(\text{tự c/m}\right)}\)

p/s: bn tự kết luận nha :))

8 tháng 2 2020

a, \(\frac{x-3}{5}\) = 6 - \(\frac{1-2x}{3}\)

3(x - 3) = 90 - 5(1 - 2x)

⇔ 3x - 9 = 90 - 5 + 10x

⇔ 3x - 10x = 90 - 5 + 9

⇔ -7x = 94

⇔ x = \(\frac{-94}{7}\)

S = { \(\frac{-94}{7}\) }

b, \(\frac{3x-2}{6}\) - 5 = \(\frac{3-2\left(x+7\right)}{4}\)

⇔ 2(3x - 2) - 60 = 9 - 6(x + 7)

⇔ 6x - 4 - 60 = 9 - 6x - 42

⇔ 6x + 6x = 9 - 42 + 60 + 4

⇔ 12x = 31

⇔ x = \(\frac{31}{12}\)

S = { \(\frac{31}{12}\) }

c, \(\frac{x+8}{6}\) - \(\frac{2x-5}{5}\) = \(\frac{x+1}{3}\) - x + 7

⇔ 5(x+ 8) - 6(2x - 5) = 10(x+1) - 30x+210

⇔ 5x+ 40 - 12x+ 30 = 10x+ 10 - 30x+210

⇔ 5x - 12x - 10x+ 30x = 10+ 210 - 30- 40

⇔ 13x = 150

⇔ x = \(\frac{150}{13}\)

S = { \(\frac{150}{13}\) }

d, \(\frac{7x}{8}\) - 5(x - 9) = \(\frac{2x+1,5}{6}\)

⇔ 21x - 120(x - 9) = 4(2x + 1,5)

⇔ 21x - 120x + 1080 = 8x + 6

⇔ 21x - 120x - 8x = 6 - 1080

⇔ -107x = -1074

⇔ x = \(\frac{1074}{107}\)

S = { \(\frac{1074}{107}\) }

e, \(\frac{5\left(x-1\right)+2}{6}\) - \(\frac{7x-1}{4}\) = \(\frac{2\left(2x+1\right)}{7}\) - 5

⇔ 140(x-1)+56 - 42(7x-1) = 48(2x+1)-840

⇔ 140x -140+56 -294x+42= 96x+48 -840

⇔ 140x -294x -96x = 48 -840 -42 -56+140

⇔ -250x = -750

⇔ x = 3

S = { 3 }

f, \(\frac{x+1}{3}\) + \(\frac{3\left(2x+1\right)}{4}\) = \(\frac{2x+3\left(x+1\right)}{6}\) + \(\frac{7+12x}{12}\)

⇔ 4(x+1)+9(2x+1) = 4x+6(x+1)+7+12x

⇔ 4x+4+18x+9 = 4x+6x+6+7+12x

⇔ 4x+18x - 4x - 6x - 12x = 6+7- 9 - 4

⇔ 0x = 0

S = R

Chúc bạn học tốt !

22 tháng 4 2020

Bạn ơi giải giúp mình 2 bài này với ạ : https://hoc24.vn/hoi-dap/question/969683.html

Mình cảm ơn trước nhaa

16 tháng 3 2020

Mấy câu như vậy bạn tải photomath về dùng nhé :)

17 tháng 7 2016

a)\(\frac{1}{x-1}\)-\(\frac{3x2}{x3-1}\)=\(\frac{2x}{x2+x+1}\)

<=> \(\frac{1}{x-1}\)-\(\frac{3x2}{\left(x-1\right)\left(x2+x+1\right)}\)=\(\frac{2x}{x2+x+1}\) ĐKXĐ: x khác 1

<=> x2+x+1 - 3x2 = 2x(x-1)

<=>x2+x+1 - 3x2 = 2x2-2x

<=>x2-3x-1=0( đoạn này làm nhanh nhé)

<=>x2-2*\(\frac{3}{2}\)x +\(\frac{9}{4}\)-\(\frac{9}{4}\)-1=0

<=>(x-\(\frac{3}{2}\))2-\(\frac{13}{4}\)=0

<=>(x-\(\frac{3-\sqrt{13}}{2}\))(x-\(\frac{3+\sqrt{13}}{2}\))=0

\(\begin{cases}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{cases}\)

17 tháng 7 2016

b) pt... đkxđ x khác 1;2;3

<=>  3(x-3) +2(x-2)=x-1

<=>  3x-9 +2x-4 = x-1

<=> 4x= 12

<=>  x=3 ( ko thỏa đk)

vậy pt vô nghiệm

 

 

4 tháng 4 2020

a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne\pm2\\x\ne0\end{matrix}\right.\)

Ta có : \(\frac{x-4}{x\left(x+2\right)}-\frac{1}{x\left(x-2\right)}=-\frac{2}{\left(x+2\right)\left(x-2\right)}\)

=> \(\frac{\left(x-4\right)\left(x-2\right)}{x\left(x+2\right)\left(x-2\right)}-\frac{x+2}{x\left(x-2\right)\left(x+2\right)}=-\frac{2x}{x\left(x+2\right)\left(x-2\right)}\)

=> \(\left(x-4\right)\left(x-2\right)-x-2=-2x\)

=> \(x^2-4x-2x+8-x-2=-2x\)

=> \(x^2-5x+6=0\)

=> \(\left(x-2\right)\left(x-3\right)=0\)

=> \(\left[{}\begin{matrix}x=2\\x=3\left(TM\right)\end{matrix}\right.\)

=> x = 3 .

Vậy phương trình trên có tập nghiệm là \(S=\left\{3\right\}\)

b, ĐKXĐ : \(x\ne0,-3,-6,-9,-12\)

Ta có : \(\frac{1}{x\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+9\right)}+\frac{1}{\left(x+9\right)\left(x+12\right)}=\frac{1}{16}\)

=> \(\frac{1}{x}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+9}+\frac{1}{x+9}-\frac{1}{x+12}=\frac{1}{16}\)

=> \(\frac{1}{x}-\frac{1}{x+12}=\frac{1}{16}\)

=> \(\frac{x+12}{x\left(x+12\right)}-\frac{x}{x\left(x+12\right)}=\frac{1}{16}\)

=> \(x\left(x+12\right)=192\)

=> \(x^2+12x-192=0\)

=> \(x^2+2x.6+36-228=0\)

=> \(\left(x+6\right)^2=288\)

=> \(\left[{}\begin{matrix}x=\sqrt{288}-6\\x=-\sqrt{288}-6\end{matrix}\right.\) ( TM )

Vậy phương trình có tập nghiệm là \(S=\left\{\pm\sqrt{288}-6\right\}\)