K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(f'\left(x\right)=\dfrac{\left(x^2\right)'\cdot\left(x+1\right)-x^2\cdot\left(x+1\right)'}{\left(x+1\right)^2}\)

\(=\dfrac{2x\left(x+1\right)-x^2}{\left(x+1\right)^2}=\dfrac{x^2+2x}{\left(x+1\right)^2}\)

\(y'=\dfrac{x'\left(x+1\right)-x\left(x+1\right)'}{\left(x+1\right)^2}=\dfrac{x+1-x}{\left(x+1\right)^2}=\dfrac{1}{\left(x+1\right)^2}\)

\(y'\left(0\right)=\dfrac{1}{\left(0+1\right)^2}=1\)

NV
4 tháng 4 2021

1a.

\(y'=3x^2.f'\left(x^3\right)-2x.g'\left(x^2\right)\)

b.

\(y'=\dfrac{3f^2\left(x\right).f'\left(x\right)+3g^2\left(x\right).g'\left(x\right)}{2\sqrt{f^3\left(x\right)+g^3\left(x\right)}}\)

2.

\(f'\left(x\right)=\left(m-1\right)x^3+\left(m-2\right)x^2-2mx+3=0\)

Để ý rằng tổng hệ số của vế trái bằng 1 nên pt luôn có nghiệm \(x=1\), sử dụng lược đồ Hooc-ne ta phân tích được:

\(\Leftrightarrow\left(x-1\right)\left[\left(m-1\right)x^2+\left(2m-3\right)x-3\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(m-1\right)x^2+\left(2m-3\right)x-3=0\left(1\right)\end{matrix}\right.\)

Xét (1), với \(m=1\Rightarrow x=-3\)

- Với \(m\ne1\Rightarrow\Delta=\left(2m-3\right)^2+12\left(m-1\right)=4m^2-3\)

Nếu \(\left|m\right|< \dfrac{\sqrt{3}}{2}\Rightarrow\) (1) vô nghiệm \(\Rightarrow f'\left(x\right)=0\) có đúng 1 nghiệm

Nếu \(\left|m\right|>\dfrac{\sqrt{3}}{2}\Rightarrow\left(1\right)\) có 2 nghiệm \(\Rightarrow f'\left(x\right)=0\) có 3 nghiệm

8 tháng 4 2021

1/ \(y'=\dfrac{\left(\sqrt{x+1}\right)'x-x'\sqrt{x+1}}{x^2}=\dfrac{\dfrac{x}{2\sqrt{x+1}}-\sqrt{x+1}}{x^2}=\dfrac{-x-2}{2x^2\sqrt{x+1}}\)

2/ \(y'=\dfrac{1-x^2-\left(1-x^2\right)'x}{\left(1-x^2\right)^2}=\dfrac{1+x^2}{\left(1-x^2\right)^2}\)

3/ \(y'=\dfrac{-\left(x-\sqrt{x+1}\right)'}{\left(x-\sqrt{x+1}\right)^2}=\dfrac{-1+\dfrac{1}{2\sqrt{x+1}}}{\left(x-\sqrt{x+1}\right)^2}\)

4/ \(y'=f'\left(x\right)=2x-\dfrac{2x}{x^4}=2x-\dfrac{2}{x^3}\)

\(y'=0\Leftrightarrow\dfrac{2x^4-2}{x^3}=0\Leftrightarrow x=\pm1\)

5/ \(y'=\dfrac{\dfrac{1}{2\sqrt{1+x}}}{2\sqrt{1+\sqrt{1+x}}}\Rightarrow f\left(x\right).f'\left(x\right)=\sqrt{1+\sqrt{1+x}}.\dfrac{1}{4\sqrt{1+x}.\sqrt{1+\sqrt{1+x}}}=\dfrac{1}{4\sqrt{1+x}}=\dfrac{1}{2\sqrt{2}}\)

\(\Leftrightarrow2\sqrt{1+x}=\sqrt{2}\Leftrightarrow1+x=\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\)

Hãy nhớ câu tính đạo hàm này, bởi nó liên quan đến nguyên hàm sau này sẽ học

8 tháng 4 2021

ok cảm ơn bạn nhìu

NV
10 tháng 4 2021

1. Áp dụng quy tắc L'Hopital

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x+1}-1}{f\left(0\right)-f\left(x\right)}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{2\sqrt{x+1}}}{-f'\left(0\right)}=-\dfrac{1}{6}\)

2.

\(g'\left(x\right)=2x.f'\left(\sqrt{x^2+4}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\f'\left(\sqrt{x^2+4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x^2+4}=1\\\sqrt{x^2+4}=-2\end{matrix}\right.\) 

2 pt cuối đều vô nghiệm nên \(g'\left(x\right)=0\) có đúng 1 nghiệm

1. Cho hs y=f(x) có đạo hàm thỏa mãn f'(6)=2. Tính giá trị biểu thức lim \(_{x-6}\)\(\dfrac{f\left(x\right)-f\left(6\right)}{x-6}\)2. Gọi d là tiếp tuyến của hs y=\(\dfrac{x-1}{x+2}\) tại điểm có hoàng độ bằng -3. Khi đó d tạo với 2 trục tọa độ 1 tam giác có diện tích là bao nhiêu?3. Cho lim \(_{x-2}\)\(\dfrac{\sqrt{3x+3}-m}{x-2}\)=\(\dfrac{a}{b}\)với m là số thực và \(\dfrac{a}{b}\)tối giản. Tính 2a-b4. Cho hàm số y=f(x) xác định và có...
Đọc tiếp

1. Cho hs y=f(x) có đạo hàm thỏa mãn f'(6)=2. Tính giá trị biểu thức lim \(_{x->6}\)\(\dfrac{f\left(x\right)-f\left(6\right)}{x-6}\)

2. Gọi d là tiếp tuyến của hs y=\(\dfrac{x-1}{x+2}\) tại điểm có hoàng độ bằng -3. Khi đó d tạo với 2 trục tọa độ 1 tam giác có diện tích là bao nhiêu?

3. Cho lim \(_{x->2}\)\(\dfrac{\sqrt{3x+3}-m}{x-2}\)=\(\dfrac{a}{b}\)với m là số thực và \(\dfrac{a}{b}\)tối giản. Tính 2a-b

4. Cho hàm số y=f(x) xác định và có đạo hàm trên tập số thực. Biết f'(1)=5 và f(1)=6. Tìm giới hạn lim \(_{x->1}\)\(\dfrac{f^2\left(x\right)-f\left(x\right)-30}{\sqrt{x}-1}\)

5. Cho tam giác ABC có 2 trung tuyến kẻ từ A đến B vuông góc với nhau. Khi đó tỉ số \(\dfrac{AC+BC}{AB}\)đạt giá trị lớn nhất bằng bao nhiêu(làm tròn đến hàng phần trăm)

6. Cho tứ diện ABCD có (ACD) vuông góc (BCD), AC=AD=BC=BD=a và CD=2x. Gọi I và J lần lượt là trung điểm của AB và CD. Với giá trị nào của x thì (ABC) vuông góc với (ABD)?

1
11 tháng 4 2021

1/ L'Hospital:

\(=\lim\limits_{x\rightarrow6}f'\left(x\right)=f'\left(6\right)=2\)

3/ \(=\lim\limits_{x\rightarrow2}\dfrac{\dfrac{3}{2\sqrt{3x+3}}}{1}=\dfrac{1}{2}\Rightarrow2a-b=0\)

4/ \(=\lim\limits_{x\rightarrow1}\dfrac{2f\left(x\right).f'\left(x\right)-f'\left(x\right)}{\dfrac{1}{2\sqrt{x}}}=\dfrac{2.6.5-5}{\dfrac{1}{2}}=110\)

2/ \(x_0=-3\Rightarrow y_0=\dfrac{-3-1}{-3+2}=\dfrac{-4}{-1}=4\)

\(y'=\dfrac{\left(x-1\right)'\left(x+2\right)-\left(x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}=\dfrac{x+2-x+1}{\left(x+2\right)^2}=\dfrac{3}{\left(x+2\right)^2}\)

\(\Rightarrow y'\left(-3\right)=3\)

\(\Rightarrow pttt:y=3\left(x+3\right)+4=3x+13\)

\(x=0\Rightarrow y=13;y=0\Rightarrow x=-\dfrac{13}{3}\)

\(\Rightarrow S=\dfrac{1}{2}.\left|x\right|\left|y\right|=\dfrac{1}{2}.\dfrac{13}{3}.13=\dfrac{169}{6}\left(dvdt\right)\)

P/s: Câu 5,6 bỏ qua nhé, toi ngu hình học :b

11 tháng 4 2021

 cảm ơn bạn nhé =))

31 tháng 7 2021

`f'(x) = x^2 - 4x+m`

`f'(x) >=0 <=>x^2-4x+m>=0`

`<=> \Delta' >=0`

`<=> 2^2-1.m>=0`

`<=> m<=4`

Vậy....

23 tháng 3 2017

\(f'=6x^8-6x^5+6x+6=6\left(x^8-x^5+x+1\right)\)

\(\left[{}\begin{matrix}\left|x\right|\le1\Rightarrow\left|x^5-x\right|\le\left|x\right|\le1\Rightarrow1-x^5-x\ge0\\\left|x\right|\ge1\Rightarrow\left|x^5\right|\le x^8\Rightarrow\left\{{}\begin{matrix}x^8-x^5>0\\x^2-x>0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow f'\left(x\right)>0\forall x\)

28 tháng 3 2017

​lập luận 1 noi ,kết luận 1 ngã...ketluan:ngu vai.

\(f'\left(x\right)=\dfrac{\left(x^2\right)'\left(x+1\right)-x^2\left(x+1\right)'}{\left(x+1\right)^2}\)

\(=\dfrac{2x\left(x+1\right)-x^2}{\left(x+1\right)^2}=\dfrac{x^2+2x}{x^2+2x+1}\)

23 tháng 4 2021

\(f'\left(x\right)=\dfrac{\left(2x-3\right)\left(x-1\right)-x^2+3x-7}{\left(x-1\right)^2}=\dfrac{x^2-2x-4}{\left(x-1\right)^2}\)

\(f'\left(x\right)=0\Leftrightarrow x^2-2x-4=0\Rightarrow\left[{}\begin{matrix}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{matrix}\right.\)

\(\Rightarrow x_1^2+x_2^2=12\) 

Hoặc bạn dùng Vi-ét cũng được, tùy