Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1:\frac{99}{100}:\frac{98}{99}:\frac{97}{98}:.........:\frac{2}{3}:\frac{1}{2}\)
\(=1.\frac{100}{99}.\frac{99}{98}.\frac{98}{97}......\frac{3}{2}.\frac{2}{1}\)
\(=\frac{1.100.99.98....3.2}{99.98.97......2.1}\)
\(=100\)
1. a) 2B = 1 + 1/2 + 1/22+...+1/298
B - B = (1+1/2+...+1/298) - (1/2+....+1/299)
B = 1 - 299 => B < 1
b) Làm tương tự như câu a, ra là (1 - 1/399) : 2 = 1/2 - 1/2.399(C bé hơh 1/2)
1. a). Theo đầu bài ta có:
\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}\)
\(\Leftrightarrow B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(\Leftrightarrow B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)\)
\(\Leftrightarrow B=1-\frac{1}{2^{99}}< 1\)( đpcm )
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+..............+\frac{1}{99^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+................+\frac{1}{98.99}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+............+\frac{1}{98}-\frac{1}{99}\)
\(=1-\frac{1}{99}=\frac{98}{99}< 1\)
\(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.............+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...............+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
Vậy \(\frac{49}{100}< A< 1\)
1) \(\left(x-1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}\right)=0\)
mà \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}\ne0\)
\(\Rightarrow x-1=0\Leftrightarrow x=1\)
2) \(\frac{x-1}{99}-1+\frac{x-2}{98}-1+\frac{x-5}{95}-1=\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
\(\frac{x-100}{99}+\frac{x-100}{98}+\frac{x-100}{95}=\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
\(\left(x-100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\right)=\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
x - 100 = 1
x = 101
Tui ra kết quả khác.
Tính nhanh:
\(\left(2^{100}+2^{101}+2^{102}\right):\left(2^{97}+2^{98}+2^{99}\right)\\ =2^3\left(2^{97}+2^{98}+2^{99}\right):\left(2^{97}+2^{98}+2^{99}\right)\\ =2^3=8\)
Giải:
\(\left(2^{100}+2^{101}+2^{102}\right):\left(2^{97}+2^{98}+2^{99}\right).\)
\(=\left(2^3.2^{97}+2^3.2^{98}+2^3.2^{99}\right):\left(2^{97}+2^{98}+2^{99}\right).\)
\(=2^3\left(2^{97}+2^{98}+2^{99}\right):\left(2^{97}+2^{98}+2^{99}\right).\)
\(=2^3\left[\left(2^{97}+2^{98}+2^{99}\right):\left(2^{97}+2^{98}+2^{99}\right)\right].\)
\(=2^3.1.\)
\(=2^3\left(=8\right).\)
~ Học tốt!!! ... ~ ^ _ ^
~ Nguồn: tự làm, không copy đây đó ... ~
\(a,A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2017}}+\dfrac{1}{2^{2018}}\)
\(3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2016}}+\dfrac{1}{3^{2017}}\)
\(3A-A=1-\dfrac{1}{3^{2018}}\)
\(A=\dfrac{\left(1-\dfrac{1}{3^{2018}}\right)}{2}\)
\(b,B=1+5+5^2+5^3+...+5^{100}\)
\(5B=5+5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=1-5^{101}\)
\(B=\dfrac{\left(1-5^{101}\right)}{4}\)
E = 12 + 22 + 32 + ... + 982 + 992
E = 1 . ( 2 - 1 ) + 2 . ( 3 - 1 ) + 3 . ( 4 - 1 ) + ... + 98 . ( 99 - 1 ) + 99 . ( 100 - 1 )
E = 1 . 2 - 1 + 2 . 3 - 2 + 3 . 4 - 3 + ... + 98 . 99 - 98 + 99 . 100 - 99
E = 1 . 2 + 2 . 3 + 3 . 4 + ... + 98 . 99 + 99 . 100 - 1 - 2 - 3 - ... - 98 - 99
E = ( 1 . 2 + 2 . 3 + 3 . 4 + ... + 98 . 99 + 99 . 100 ) - ( 1 + 2 + 3 + ... + 98 + 99 )
Biểu thức trong ngoặc đầu bằng 333300, biểu thức trong dấu ngoặc sau bằng : 99 . 100 : 2 = 4950
=> E = 333300 - 4950 = 328350
=1.1+2.2+3.3+.......+99.99
\(=1\left(2-1\right)+2\left(3-1\right)+.....+99\left(100-1\right)\)\(=1.2-1+2.3-2+....+99.100-99\)
\(=1.2+2.3+...+99.100+1-2-3-...-99\)
\(=1.2.3+2.3.4+...+99.100.101+1-\left(2+3+...+99\right)\)
\(=99.100.101+1-\left(\frac{\left(2+99\right)98}{2}\right)\)
=99.100.101+(-4948)
=999900-4948
=994952