\(^2\) 15 +sin\(^2\) 75 -\(\df...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(D=\sin^215+\sin^275-\dfrac{2\cos49}{\sin41}+\tan26.\tan64\)

\(=\sin^215+\cos^215-\dfrac{2\cos49}{\cos49}+1\)

\(=1-2+1=0\)

Học tốt !!

4 tháng 10 2018

a) \(\dfrac{1}{1+tan\alpha}+\dfrac{1}{1+cot\alpha}\)

\(=\dfrac{1}{1+\dfrac{1}{cot\alpha}}+\dfrac{1}{1+cot\alpha}\)

\(=\dfrac{1}{\dfrac{cot\alpha+1}{cot\alpha}}+\dfrac{1}{1+cot\alpha}\)

\(=\dfrac{cot\alpha}{cot\alpha+1}+\dfrac{1}{1+cot\alpha}\)

\(=\dfrac{cot\alpha+1}{cot\alpha+1}=1\) (đpcm)

b) \(tan^2x+cot^2x+2\)

\(=\dfrac{sin^2x}{cos^2x}+\dfrac{cos^2x}{sin^2x}+2\)

\(=\dfrac{sin^2x}{cos^2x}+1+\dfrac{cos^2x}{sin^2x}+1\)

\(=\dfrac{sin^2x+cos^2x}{cos^2x}+\dfrac{cos^2x+sin^2x}{sin^2x}\)

\(=\dfrac{1}{cos^2x}+\dfrac{1}{sin^2x}\) (đpcm)

c) \(sinx.cosx.\left(1+tanx\right)\left(1+cotx\right)\)

\(=\left(sinx.cosx+sinx.cosx.tanx\right)\left(1+cotx\right)\)

\(=\left(sinx.cosx+sinx.cosx.\dfrac{sinx}{cosx}\right)\left(1+cotx\right)\)

\(=\left(sinx.cosx+sin^2x\right)\left(1+cotx\right)\)

\(=\left(sinx.cosx+sin^2x\right)\left(1+\dfrac{cosx}{sinx}\right)\)

\(=sinx.cosx+cos^2x+sin^2x+sinx.cosx\)

\(=1+sin^2x.cos^2x\)

Câu cuối không biết chỗ sai, mong mọi người chỉ bảo ạ ^^

16 tháng 7 2018

Ta có:

\(sin=\dfrac{doi}{huyen}\); \(cos=\dfrac{ke}{chuyen}\);\(tan=\dfrac{doi}{ke}\); \(cot=\dfrac{ke}{doi}\)

Dùng cái này làm được hết mấy câu đó.

16 tháng 7 2018

nếu bn thấy dùng cách của hùng có hới dài thì bn chỉ cần sử dụng cách đó cho 3 ý trên thôi . còn 3 ý dưới bn có thể sử dụng công thức \(sin^2x+cos^2x=1\) vừa chứng minh xong để giải quyết .

27 tháng 9 2018

a) 1 + tan22 a =1 +(\(\dfrac{sina}{cosa}\))2 =\(\dfrac{sina+cosa}{cos^2a}\)=\(\dfrac{1}{cos^2a}\)

b) 1 + cot2 a= 1 +(\(\dfrac{cosa}{sina}\))2 = \(\dfrac{cosa+sina}{sin^2a}\)=\(\dfrac{1}{sin^2a}\)

c) tan2 a (2 sin2a + 3 cos2 a - 2)

=tan2 a[cos2 a +2 (\(sina^2+cos^2a\))-2 ]

=\(\dfrac{sin^2a}{cos^2a}\)×\(cos^2a=sin^2a\)

b: \(1+cot^2a=1+\left(\dfrac{cosa}{sina}\right)^2=\dfrac{1}{sin^2a}\)

c: \(=tan^2a\left[2\left(1-cos^2a\right)+3cos^2a-2\right]\)

\(=tan^2a\left[cos^2a\right]\)

\(=\dfrac{sin^2a}{cos^2a}\cdot cos^2a=sin^2a\)

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

13 tháng 9 2017

vô ib mk chỉ cho

31 tháng 10 2017

\(a,1-sin^2\alpha=cos^2\alpha\)

\(b,\left(1-cos\alpha\right)\left(1+cos\alpha\right)=1-cos^2\alpha=sin^2\alpha\)

\(c,1+sin^2\alpha+cos^2\alpha=1+1=2\)

\(d,sin\alpha-sin\alpha.cos^2\alpha=sin\alpha.\left(1-cos^2\alpha\right)=sin\alpha.sin^2\alpha=sin^3\alpha\)

\(e,sin^2\alpha+cos^2\alpha+2sin^2\alpha.cos^2\alpha\)

\(=1+2sin^2\alpha.cos^2\alpha\)

1 tháng 7 2018

a)\(\sin\alpha=\dfrac{9}{15}\Rightarrow\sin^2\alpha=\dfrac{81}{225}\)

Có: \(\sin^2\alpha+\cos^2\alpha=1\)

\(\Rightarrow\cos^2\alpha=1-\sin^2\alpha=1-\dfrac{81}{225}=\dfrac{144}{225}\)

\(\Rightarrow\cos\alpha=\sqrt{\dfrac{144}{225}}=\dfrac{12}{15}=\dfrac{4}{5}\)

\(\Rightarrow\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{9}{15}:\dfrac{4}{5}=\dfrac{3}{4}\)

\(\cot\alpha=\dfrac{\cos\alpha}{\tan\alpha}=\dfrac{4}{5}:\dfrac{9}{15}=\dfrac{4}{3}\)

b)\(\cos\alpha=\dfrac{3}{5}\Rightarrow\cos^2\alpha=\dfrac{9}{25}\)

Có: \(\sin^2\alpha+\cos^2\alpha=1\)

\(\Rightarrow\sin^2\alpha=1-\cos^2\alpha=1-\dfrac{9}{25}=\dfrac{16}{25}\)

\(\Rightarrow\sin\alpha=\dfrac{4}{5}\)

\(\Rightarrow\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\)

\(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\)

2 tháng 7 2018

thank