Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
Sửa chỗ đó: Vẽ Q là tia đối với HM
a) Xét tứ giác HCQB có:
M trung điểm BC
HM=MQ => M trung điểm HQ ( vì HM là tia đối với MQ)
Mà 2 đường chéo này cắt nhau tại M
=> HCQB là hbh ( 2 đường chéo cắt nhau tại trung điểm mỗi đường) (đpcm).
b) Vì HCQB là hbh
=> HC/BQ
mà CE_|_ AB => HC_|_AB
=> CQ_|_EC
nên:CQ_|_AC (đpcm)
HCQB là hbh
=> BE//CQ
Mà CE_|_AB
Nên: QB_|_AB (đpcm)
c) vì M là trung điểm HQ (tia đối)
D trung điểm HP ( tia đối )
=>HM là đường tb của t/gPHQ
Vì DM là đường tb nên DM//PQ
=> BC//PQ
=> BPQC là hình thang (1)
Xét tam giác HPQ có
HD=DP=1/2 HP (gt)
HM=MQ=1/2HQ (gt)
=> HP=HQ
Do đó tam giác HPQ là tam giác cân tại H
=> ^HPQ=^HQP (2 góc tương ứng) (2)
Từ (1) và (2)=> BPQC là hình thang cân (đpcm)
d) ( câu này mình ngại làm b có thể bỏ đi)
a: Xét tứ giác BHCD có
M là trung điểm chung của BC và HD
=>BHCD là hình bình hành
b: BHCD là hình bình hành
=>BH//CD và BD//CH
BH//CD
CA\(\perp\)BH
Do đó: \(CA\perp\)CD
=>ΔACD vuông tại C
BD//CH
AB\(\perp\)CH
Do đó: AB\(\perp\)BD
=>ΔABD vuông tại B
c: ΔBAD vuông tại B
mà BI là đường trung tuyến
nên IB=IA=ID(1)
ΔCAD vuông tại C
mà CI là đường trung tuyến
nên CI=IA=ID(2)
Từ (1) và (2) suy ra IA=IB=IC=ID
a) Chứng minh tứ giác BHCD là hình bình hành:
Xét tứ giác BHCD:
M là trung điểm của BC (gt)
M là trung điểm của HD (gt)
*Nên hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường.
* Vậy tứ giác BHCD là hình bình hành (dấu hiệu nhận biết hình bình hành: hai đường chéo cắt nhau tại trung điểm mỗi đường).
b) Chứng minh tam giác ABD vuông tại B và tam giác ACD vuông tại C:
Xét hình bình hành BHCD:
BH // CD (tính chất hình bình hành)
CH // BD (tính chất hình bình hành)
Xét tam giác ABC:
* AF là đường cao (gt) => AF vuông góc với BC
* Mà BH // CD (cmt) => AF vuông góc với CD
Tương tự:
CH // BD (cmt) => AF vuông góc với BD
Kết luận:
* Tam giác ABD vuông tại B (AF vuông góc với BD)
* Tam giác ACD vuông tại C (AF vuông góc với CD)
**c) Chứng minh IA=IB=IC=ID:**
* **Xét tam giác AHD:**
* M là trung điểm của HD (gt)
* I là trung điểm của AD (gt)
* Nên IM là đường trung tuyến của tam giác AHD
* Vậy IA = ID (tính chất đường trung tuyến trong tam giác)
* **Xét tam giác BCD:**
* M là trung điểm của BC (gt)
* I là trung điểm của AD (gt)
* Nên IM là đường trung tuyến của tam giác BCD
* Vậy IB = IC (tính chất đường trung tuyến trong tam giác)
* **Kết luận:**
* IA = IB = IC = ID
**Tóm lại:**
* Tứ giác BHCD là hình bình hành.
* Tam giác ABD vuông tại B và tam giác ACD vuông tại C.
* IA = IB = IC = ID.
Bài 2 :
a, Xét tam giác ABC ta có :
D là trung điểm AB
M là trung điểm CB
=)) DM là đường TB tam giác ABC
=)) DM // AC hay DM // AE (1)
Ta có : E là trung điểm AC
M là trung điểm BA
=)) EM là đường TB tam giác ABC
=)) EM // AB hay EM // AD (2)
Từ 1;2 =)) Tứ giác ADME là hình bình hành
b, Nếu tam giác ABC cân tại A => AM là đường trung tuyến AM
=)) AM đồng thời là tia phân giác của ^A
Xét hình bình hành ADME có 2 đường chéo AM là tia phân giác của ^A (cmt)
=)) Tứ giác ADME là hình thoi
c, Nếu tam giác ABC vuông tại A => ^A = 90^0
Xét hình bình hành ADME có ^A =90^0
=)) Tứ giác ADME là hình chữ nhật
2:
a: DB=DC
=>D là trung điểm của BC
DM=DN
mà D nằm giữa M và N
nên D là trung điểm của MN
Xét tứ giác BMCN có
D là trung điểm chung của BC và MN
=>BMCN là hình bình hành
b: Ta có: BMCN là hình bình hành
=>BM//CN
mà BM\(\perp\)AC
nên CN\(\perp\)AC
Xét tứ giác BKCN có
BK//CN
BK\(\perp\)KC
Do đó: BKCN là hình thang vuông
c: Để BMCN là hình thoi thì MN\(\perp\)BC
hay MD\(\perp\)BC
Xét ΔABC có
BK,CH là các đường cao
BK cắt CH tại M
Do đó: M là trực tâm của ΔABC
=>AM\(\perp\)BC
ta có: AM\(\perp\)BC
MD\(\perp\)BC
mà AM,MD có điểm chung là M
nên A,M,D thẳng hàng
Xét ΔABC có
AD là đường cao
AD là đường trung tuyến
Do đó: ΔABC cân tại A
=>AB=AC
1: Diện tích đáy là; \(4000\cdot3:30=4000:10=400\left(cm^2\right)\)
Độ dài cạnh đáy là \(\sqrt{400}=20\left(cm\right)\)