Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời..............
Theo mình làm là ..........
a, Chứng minh tứ giác ADHB nội tiết có:ADB=900(AD vuông với BE)
AHB=900 (AH là đường cao)
Suy ra:ADB=AHB=900
Vậy tứ giác ABHB nội tiếp đường tròn đường kính AB
Tâm O đường tròn là trung điểm AB
b, Chứng minh EAD=HBD
Do AB vuông góc vớiAB
Suy ra EAD =ABD (1)
Mà ABD=HBD (2)
Từ (1) và (2) ta được EAD=HBD
Chứng minh OD sOng song OB
Ta có OD=OB
Nên tam giác OBD cân tại O
Suy ra OD song song OB
c, Tính diện tích phần tam giác ABC nằm ngoài đường tròn O
Ta có:ABC=60 độ
Xin lỗi tới đây tớ ko biết làm
AB=21/(3+4)x3=9 cm
AC=21-9=12cm
Tự kẻ hình bạn nhé =)))
Áp dụng định lí Pitago vào tam giác ABC , có
AB^2+AC^2=BC^2
=>thay số vào, tính được BC=15cm
Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:
AB^2=BHxBC
=>BH=81/15=5.4cm
=>CH=15-5.4=9.6cm
AH^2=BHxCH=5.4x9.6=51.84cm
Xét ΔAHB vuông tại H có \(sinB=\dfrac{AH}{AB}\)
=>\(\dfrac{AH}{6}=sin40\)
=>\(AH=6\cdot sin40\simeq3,86\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HB=\sqrt{AB^2-AH^2}\simeq4,59\left(cm\right)\)
Ta có: ΔAHB vuông tại H
=>\(\widehat{HAB}+\widehat{HBA}=90^0\)
=>\(\widehat{HAB}=90^0-40^0=50^0\)
Ta có: \(\widehat{HAB}+\widehat{HAC}=\widehat{BAC}\)
=>\(\widehat{HAC}=60^9-50^0=10^0\)
Xét ΔAHC vuông tại H có \(tanHAC=\dfrac{HC}{AH}\)
=>\(\dfrac{HC}{3,86}=tan10\)
=>\(HC\simeq0,68\left(cm\right)\)
ΔHAC vuông tại H
=>\(HA^2+HC^2=AC^2\)
=>\(AC\simeq\sqrt{0,68^2+3,86^2}\simeq3,92\left(cm\right)\)