Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Trả lời..............
Theo mình làm là ..........
a, Chứng minh tứ giác ADHB nội tiết có:ADB=900(AD vuông với BE)
AHB=900 (AH là đường cao)
Suy ra:ADB=AHB=900
Vậy tứ giác ABHB nội tiếp đường tròn đường kính AB
Tâm O đường tròn là trung điểm AB
b, Chứng minh EAD=HBD
Do AB vuông góc vớiAB
Suy ra EAD =ABD (1)
Mà ABD=HBD (2)
Từ (1) và (2) ta được EAD=HBD
Chứng minh OD sOng song OB
Ta có OD=OB
Nên tam giác OBD cân tại O
Suy ra OD song song OB
c, Tính diện tích phần tam giác ABC nằm ngoài đường tròn O
Ta có:ABC=60 độ
Xin lỗi tới đây tớ ko biết làm
![](https://rs.olm.vn/images/avt/0.png?1311)
AB=21/(3+4)x3=9 cm
AC=21-9=12cm
Tự kẻ hình bạn nhé =)))
Áp dụng định lí Pitago vào tam giác ABC , có
AB^2+AC^2=BC^2
=>thay số vào, tính được BC=15cm
Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:
AB^2=BHxBC
=>BH=81/15=5.4cm
=>CH=15-5.4=9.6cm
AH^2=BHxCH=5.4x9.6=51.84cm
Xét ΔAHB vuông tại H có \(sinB=\dfrac{AH}{AB}\)
=>\(\dfrac{AH}{6}=sin40\)
=>\(AH=6\cdot sin40\simeq3,86\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HB=\sqrt{AB^2-AH^2}\simeq4,59\left(cm\right)\)
Ta có: ΔAHB vuông tại H
=>\(\widehat{HAB}+\widehat{HBA}=90^0\)
=>\(\widehat{HAB}=90^0-40^0=50^0\)
Ta có: \(\widehat{HAB}+\widehat{HAC}=\widehat{BAC}\)
=>\(\widehat{HAC}=60^9-50^0=10^0\)
Xét ΔAHC vuông tại H có \(tanHAC=\dfrac{HC}{AH}\)
=>\(\dfrac{HC}{3,86}=tan10\)
=>\(HC\simeq0,68\left(cm\right)\)
ΔHAC vuông tại H
=>\(HA^2+HC^2=AC^2\)
=>\(AC\simeq\sqrt{0,68^2+3,86^2}\simeq3,92\left(cm\right)\)