Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nửa chu vi của hình chóp là: (10.4) : 2 = 20
Sxq = p.d = 20.13 = 260 (đvdt)
b) Diện tích đáy là: Sđ = 10.10 = 100
⇒ Diện tích toàn phần là: 260 + 100 = 360
a) Trong hình 125a có 4 tam giác cân bằng nhau.
b) Chiều cao ứng với đáy của mỗi tam giác:
\(AH=\sqrt{AC^2-HC^2}\)
\(=\sqrt{AC^2-\left(\dfrac{1}{2}.5\right)^2}=\sqrt{100-\dfrac{25}{4}}=9,68\left(cm\right)\)
c) Diện tích xung quanh hình chóp:
Sxq = pd = \(\dfrac{1}{2}\).5.4.9,68 = 96,8 (cm2 )
Diện tích đáy:
Sđ = 52 = 25 (cm2 )
Diện tích toàn phần của hình chóp:
Stp = Sxq + Sđ = 121,8 (cm2 )
Hình a : Sxq = p.d = \(\dfrac{1}{2}\).20.4.20 = 800(cm2)
Diện tích đáy: Sđ = 202 = 400(cm2)
Diện tích toàn phần của lăng trụ hai là:
Stp = Sxq + Sđ = 800 + 400 = 1200(cm2)
Hình b: Sxq = p.d = \(\dfrac{1}{2}\).7.4.12 = 168(cm2)
Sđ = 72 = 49(cm2)
Stp = Sxq + Sđ = 168 + 49 = 217(cm2)
Hình c: Chiều cao của mặt bên của hình chóp:
\(h=\sqrt{17^2-8^2}=\sqrt{225}=15\left(cm\right)\)
Sxq = p.d = \(\dfrac{1}{2}\).16.4.15 = 480(cm2)
Sđ = 162 = 256(cm2)
Stp = Sxq + Sđ = 480 + 256 = 736(cm2)
- Xét tam giác BID vuông tại I, có
\(I{{\rm{D}}^2} = B{{\rm{D}}^2} - B{I^2} = {10^2} - {5^2}\)
=> ID ≈ 8,66 (cm)
- Diện tích tam giác BCD là:
\({S_{BC{\rm{D}}}} = \frac{1}{2}.I{\rm{D}}.BC = \frac{1}{2}.8,66.10 = 43,3\left( {c{m^2}} \right)\)
- Thể tích hình chóp là:
\(V = \frac{1}{3}.S.h = \frac{1}{3}.43,3.12 \approx 173,2(c{m^3})\)
* Nửa chu vi của tam giác ABC là:
\(\left( {12 + 12 + 12} \right):2 = 18(m)\)
Xét tam giác HBD vuông tại H, có:
\(\begin{array}{l}H{{\rm{D}}^2} = B{{\rm{D}}^2} - B{H^2} = {8^2} - {6^2}\\ \Rightarrow H{\rm{D}} = 2\sqrt 7 \end{array}\)
Diện tích xung quanh của hình chóp tam giác đều là:
\({S_{xq}} = p.d = 18.2\sqrt 7 = 36\sqrt 7 \left( {{m^2}} \right)\)
* Nủa chu vi của tứ giác ABCD là:
\(\left( {10.4} \right):2 = 20\)
Xét tam giác SHD vuông tại H, ta có:
\(\begin{array}{l}S{H^2} = S{{\rm{D}}^2} - H{{\rm{D}}^2} = {12^2} - {6^2} = 119\\ \Rightarrow SH = \sqrt {119} \end{array}\)
Diện tích xung quanh của hình chóp tứ giác đều là:
\({S_{xq}} = p.d = 20.\sqrt {119} = 20\sqrt {119} \left( {{m^2}} \right)\)