Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Diện tích đáy: $5.5=25$ (cm2)
Chiều cao mỗi hình mặt bên: $\sqrt{6^2+(5:2)^2}=6,5$ (cm)
Diện tích mỗi mặt bên: $6,5.5:2=16,25$ (cm2)
Diện tích toàn phần: $25+16,25=41,25$ (cm2)
b. Thể tích: $\frac{1}{3}.6.25=50$ (cm3)
Nữa chu vi đáy của hình chóp đều:
\(5\cdot4:2=10\left(cm\right)\)
Diện tích xung quanh của hình chóp đều là:
\(S_{xq}=10\cdot6,5=65\left(cm^2\right)\)
Diện tích đáy của hình chóp đều:
\(5^2=25\left(cm^2\right)\)
Thể tích của hình chóp đều:
\(V=\dfrac{1}{3}\cdot25\cdot6=50\left(cm^3\right)\)
Hình chóp tứ giác đều, cạnh đáy bằng 1m, chiếu cao hình chóp bằng 0,5m.
Tương tự hình vẽ câu a ta có AM Δ BC.
Vì AO là đường cao của hình chóp nên ΔAOM vuông tại O.
Áp dụng định li Pi-ta-go vào tam giác vuông AOM,ta có:
A M 2 = O A 2 + O M 2 = 0 , 5 2 + 0 , 5 2 = 0 , 5
Suy ra: AM = 0,5 cm
Ta có: S x q =1.2. 0 , 5 =2 0 , 5 ( m 2 )
S đ á y = 1.1=1( m 2 )
Vậy S T P = S x q + S đ á y = 2 0 , 5 + 1 ≈ 2,4( m 2 )
Hình chóp tứ giác đều, cạnh đáy bằng 20cm, chiều cao hình chóp bằng 7cm
Tương tự hình vẽ câu a ta có MA Δ BC
Vì AO là đường cao của hình chóp nên ΔAOM vuông tại O.
Áp dụng định lí Pi-ta-go vào tam giác vuông AOM, ta có:
A M 2 = O A 2 + O M 2 = 49 + 100 = 149
Suy ra: AM = 149 cm
Ta có: S x q =20.2. 149 =40 149 ( c m 2 )
S đ á y = 20.20= 400( c m 2 )
Vậy S T P = S x q + S đ á y = 40 149 +400 ≈ 888,3( c m 2 )
Sxq=16*4*17/2=544cm2
Stp=544+16^2=800cm2
V=1/3*16^2*15=1280cm3
Nữa chu vi đáy của hình chóp đều:
\(16\cdot4:2=32\left(cm\right)\)
Diện tích xung quanh của hình chóp đều:
\(S_{xq}=32\cdot17=544\left(cm^2\right)\)
Diện tích mặt đáy của hình chóp đều:
\(S_đ=16^2=256\left(cm^2\right)\)
Diện tích toàn phần của hình chóp đều:
\(S_{tp}=S_đ+S_{xq}=544+256=800\left(cm^2\right)\)
Thể tích của hình chóp đều:
\(V=\dfrac{1}{3}\cdot256\cdot15=1280\left(cm^3\right)\)
a)
Ta có: các mặt bên của hình chóp đều là những tam giác đều cạnh 5cm. Đường cao của mỗi mặt bên:
b)
Mặt bên của hình chóp lục giác đều là tam giác cân có cạnh bên 10cm, cạnh đáy 6cm.
Diện tích toàn phần của hình chóp là:
Stp = Sxq + Sđ = 171,72 + 93,6 = 265,32(cm2)
Nữa chu vi đáy của hình chóp đều:
\(8\cdot4:2=16\left(cm\right)\)
Diện tích xung quanh của hình chóp đều:
\(S_{xq}=16\cdot5=80\left(cm^2\right)\)
Diện tích đáy của hình chóp đều:
\(S_đ=8^2=64\left(cm^2\right)\)
Diện tích toàn phần của hình chóp đều:
\(S_{tp}=S_đ+S_{xq}=64+80=144\left(cm^2\right)\)
Hình chóp tứ giác đều cạnh đáy bằng 6cm, chiều cao hình chóp bằng 5cm.
Tương tự hình vẽ câu a ta có MA Δ BC.
Vì AO là đường cao của hình chóp nên △ AOM vuông tại O.
Áp dụng định lí Pi-ta-go vào tam giác vuông AOM, ta có:
A M 2 = O A 2 + O M 2 = 25 + 9 = 34
Suy ra: AM = 34 cm
Ta có: S x q =6.2. 34 =12 34 ( c m 2 )
S đ á y = 6.6 = 36 ( c m 2 )
Vậy S T P = S x q + S đ á y = 12 34 +36 ≈ 106 ( c m 2 )