K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021

dap an la 20 

8 tháng 1 2022

đáp án là 20

9 tháng 8 2019

3) Xét tam giác vuông BHC và tam giác vuôn BFE có: ^B chung 

=> Tam giác BHC ~ Tam giác BFE

=> \(\frac{BH}{BF}=\frac{BC}{BE}\)

=.> \(\frac{BH}{BC}=\frac{BF}{BE}\)

Xét tam giác BHF và tam giác BCE có:

góc B chung

\(\frac{BH}{BC}=\frac{BF}{BE}\)( chứng minh trên)

=> Tam giác BHF ~ tam giác BCE

4. 

Vì \(\frac{BH}{BC}=\frac{BF}{BE}\)=> \(BC.BF=BH.BE=CD^2=4^2=16\)

=> \(BF=16:BC=16:3=\frac{16}{3}\)(cm)

=> \(S_{BFE}=\frac{1}{2}.BF.EF=\frac{16}{3}.4=\frac{64}{3}\)(cm^2)

Tam giác BFE Vuông tại F. Áp dụng định lí Pitago

=> \(BE^2=BF^2+EF^2=\left(\frac{16}{3}\right)^2+4^2=\frac{400}{9}\Rightarrow BE=\frac{20}{3}\)(cm)

Theo câu a đã tính được \(BH=\frac{12}{5}\)(cm)

Xét tam giác BEF và Tam giác BHF có chung đường cao hạ từ F

=> Có tỉ số \(\frac{S_{BHF}}{S_{BEF}}=\frac{BH}{BE}=\frac{\frac{12}{5}}{\frac{20}{3}}=\frac{9}{25}\)

=> \(S_{BHF}=\frac{9}{25}.S_{BEF}=\frac{9}{25}.\frac{64}{3}=\frac{192}{25}\)(cm^2)

9 tháng 6 2017

Chọn (D)

Ta có DB/AB = DC/AC =>3/AB=4/AC => 4AB=3AC => AB=3/4 AC 
ta lại có BC=3+4=7 cm 
tam giác ABC vuông tại A, theo định lí pitago, ta có BC^2 = AB^2 + AC^2

=> 49= 9/16AC^2 + AC^2 => AC=28/5 => AB=21/5

30 tháng 10 2021

a: \(R=\dfrac{BC}{2}=2.5\left(cm\right)\)

b: Xét tứ giác ABDC có 

O là trung điểm của AD

O là trung điểm của BC
Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật