Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. Từ \(\dfrac{x-2}{27}=\dfrac{3}{x-2}\Rightarrow\left(x-2\right)^2=81\)
\(\Rightarrow\left(x-2\right)^2=\left(\pm9\right)^2\\ \Rightarrow\left[{}\begin{matrix}x-2=-9\\x-2=9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=11\end{matrix}\right.\)
Vậy x = -7 hoặc x = 11
4. Từ \(\dfrac{2x+5}{9-2x}=\dfrac{2}{5}\)
\(\Rightarrow5\left(2x+5\right)=2\left(9-2x\right)\\ \Leftrightarrow10x+25=18-4x\\ \Leftrightarrow14x=-7\\ \Rightarrow x=-\dfrac{1}{2}\)
5. Từ \(\dfrac{x-7}{x+8}=\dfrac{x-8}{x+9}\)
\(\Rightarrow\left(x-7\right)\left(x+9\right)=\left(x-8\right)\left(x+8\right)\\ \Leftrightarrow x^2+2x-63=x^2-64\\ \Leftrightarrow2x=-1\\ \Rightarrow x=-\dfrac{1}{2}\)
\(a,7^6+7^5-7^4⋮55\)
\(7^4\left(7^2+7-1\right)⋮55\)
\(7^4\times55⋮55\left(dpcm\right)\)
\(8^{12}-2^{33}-2^{30}\)
\(=8^{12}-\left(2^3\right)^{11}-\left(2^3\right)^{10}\)
\(=8^{12}-8^{11}-8^{10}\)
\(=8^{10}\left(8^2-8-1\right)\)
\(=8^{10}\times55⋮55\left(dpcm\right)\)
a, \(5\dfrac{4}{13}.15\dfrac{3}{41}-5\dfrac{4}{13}.2\dfrac{3}{41}\)
\(=\left(15\dfrac{3}{41}-2\dfrac{3}{41}\right).\dfrac{69}{13}=\dfrac{13.69}{13}=69\)
b, \(\dfrac{2^3}{3^3}:\dfrac{16}{27}+\dfrac{2017}{2018}-\dfrac{1}{2}.2017^0\)
\(=\dfrac{8}{27}:\dfrac{16}{27}+\dfrac{2017}{2018}-\dfrac{1}{2}.1=\dfrac{1}{2}+\dfrac{2017}{2018}-\dfrac{1}{2}=\dfrac{2017}{2018}\)
c, \(3:\left(-\dfrac{3}{2}\right)^2+\dfrac{1}{9}.\sqrt{36}=3:\dfrac{9}{4}+\dfrac{1}{9}.6=\dfrac{4}{3}+\dfrac{2}{3}=\dfrac{6}{3}=2\)
\(=\dfrac{3^6\cdot\left(3^2\right)^4\cdot5^4-5^{13}\cdot3^{13}\cdot5^{-9}}{3^{12}\cdot5^6+\left(3^2\right)^6\cdot5^6}\)
\(=\dfrac{3^{14}\cdot5^4-5^4\cdot3^{13}}{3^{12}\cdot5^6+3^{12}\cdot5^6}=\dfrac{3^{13}\cdot5^4\cdot2}{2\cdot3^{12}\cdot5^6}=\dfrac{3}{5^2}=\dfrac{3}{25}\)
tử số=3^6.45^4-15^13.5^-9=3^6.(5.3^2)^4-(3.5)^13.5^-9=3^6.5^4.3^8-3^13.5^13.5^-9=3^14.5^4-3^13.5^4(3-1)=2.3^13.5^4
mẫu số=27^4.25^3+45^6=3^12.5^6+3^12.5^6=2.3^12.5^6
phân số =(2.3^13.5^4)/2.3^12.5^6=3/25
\(=\dfrac{3^{14}\cdot5^4-3^{13}\cdot5^4}{3^{12}\cdot5^6+3^{12}\cdot5^6}\)
\(=\dfrac{3^{13}\cdot5^4\cdot\left(3-1\right)}{2\cdot3^{12}\cdot5^6}=\dfrac{9}{25}\)
1. \(\left(-\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)
\(\Rightarrow\left(-\dfrac{3}{2}\right)^x=\left(-\dfrac{3}{2}\right)^2\)
\(\Rightarrow x=2\)
2.\(3^{2x+2}=9^{10}\)
\(\Rightarrow3^{2x+2}=\left(3^2\right)^{10}\)
\(\Rightarrow3^{2x+2}=3^{20}\)
\(\Rightarrow2x+2=20\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
3)\(3^{3-2x}=27^{13}\)
\(\Rightarrow3^{3-2x}=\left(3^3\right)^{13}\)
\(\Rightarrow3^{3-2x}=3^{39}\)
\(\Rightarrow3-2x=39\)
\(\Rightarrow2x=-36\)
\(\Rightarrow x=-18\)
4)\(5.3^x=7.3^5-2.3^5\)
\(\Rightarrow5.3^x=3^5\left(7-2\right)\)
\(\Rightarrow5.3^x=3^5.5\)
\(\Rightarrow3^x=3^5\)
\(\Rightarrow x=5\)
\(=\dfrac{3^{30}}{3^9\cdot7}+\dfrac{2}{3}-\dfrac{11}{7}=\dfrac{3^{21}-11}{7}+\dfrac{2}{3}=\dfrac{3^{22}-33+14}{21}=\dfrac{3^{22}-19}{21}\)
\(\dfrac{27^{10}+9^5}{9^{13}+27^2}\)
\(=\dfrac{\left(3^3\right)^{10}+\left(3^2\right)^5}{\left(3^2\right)^{13}+\left(3^3\right)^2}\)
\(=\dfrac{3^{30}+3^{10}}{3^{26}+3^6}\)
\(=\dfrac{3^{10}\cdot\left(3^{20}+1\right)}{3^6\cdot\left(3^{20}+1\right)}\)
\(=\dfrac{3^{10}}{3^6}\)
\(=3^{10-6}\)
\(=3^4\)
1