K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2016

xét hàm số y=ln(\(x+\sqrt{1+x^2}\))

Ta có

y'=\(\frac{1}{x+\sqrt{1+x^2}}\left(1+\frac{x}{\sqrt{1+x^2}}\right)=\frac{1}{x+\sqrt{1+x^2}}.\frac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}}=\frac{1}{\sqrt{1+x^2}}\)

NV
3 tháng 5 2021

\(y'=2\sqrt{x+1}+\dfrac{2x-1}{2\sqrt{x+1}}=\dfrac{6x+3}{2\sqrt{x+1}}\)

12 tháng 5 2016

\(y'=\frac{1+\frac{x}{\sqrt{1+x^2}}}{x+\sqrt{1+x^2}}+\frac{2\cos2x}{\sin2x\ln3}=\frac{1}{\sqrt{1+x^2}}+\frac{2\cot2x}{\ln3}\)

a: \(y'=\left(x^2+2x\right)'\left(x^3-3x\right)+\left(x^2+2x\right)\left(x^3-3x\right)'\)

\(=\left(2x+2\right)\left(x^3-3x\right)+\left(x^2+2x\right)\left(3x^2-3\right)\)

\(=2x^4-6x^2+2x^3-6x+3x^4-3x^2+6x^3-6x\)

\(=5x^4+8x^3-9x^2-12x\)

b: y=1/-2x+5 

=>\(y'=\dfrac{2}{\left(2x+5\right)^2}\)

c: \(y'=\dfrac{\left(4x+5\right)'}{2\sqrt{4x+5}}=\dfrac{4}{2\sqrt{4x+5}}=\dfrac{2}{\sqrt{4x+5}}\)

d: \(y'=\left(sinx\right)'\cdot cosx+\left(sinx\right)\cdot\left(cosx\right)'\)

\(=cos^2x-sin^2x=cos2x\)

e: \(y=x\cdot e^x\)

=>\(y'=e^x+x\cdot e^x\)

f: \(y=ln^2x\)

=>\(y'=\dfrac{\left(-1\right)}{x^2}=-\dfrac{1}{x^2}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(a,y'=\left(\dfrac{\sqrt{x}}{x+1}\right)'\\ =\dfrac{\left(\sqrt{x}\right)'\left(x+1\right)-\sqrt{x}\left(x+1\right)}{\left(x+1\right)^2}\\ =\dfrac{\dfrac{x+1}{2\sqrt{x}}-\sqrt{x}}{\left(x+1\right)^2}\\ =\dfrac{x+1-2x}{2\sqrt{x}\left(x+1\right)^2}\\ =\dfrac{-x+1}{2\sqrt{x}\left(x+1\right)^2}\)

\(b,y'=\left(\sqrt{x}+1\right)'\left(x^2+2\right)+\left(\sqrt{x}+1\right)\left(x^2+2\right)'\\ =\dfrac{x^2+2}{2\sqrt{x}}+\left(\sqrt{x}+1\right)\cdot2x\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Với x > 0 bất kì và \(h = x - {x_0}\) ta có

\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {{x_0} + h} \right) - f\left( {{x_0}} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {{x_0} + h} \right) - \ln {x_0}}}{h}\\ = \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {1 + \frac{h}{{{x_0}}}} \right)}}{{\frac{h}{{{x_0}}}.{x_0}}} = \mathop {\lim }\limits_{h \to 0} \frac{1}{{{x_0}}}.\mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {1 + \frac{h}{{{x_0}}}} \right)}}{{\frac{h}{{{x_0}}}}} = \frac{1}{{{x_0}}}\end{array}\)

Vậy hàm số \(y = \ln x\) có đạo hàm là hàm số \(y' = \frac{1}{x}\)

b) Ta có \({\log _a}x = \frac{{\ln x}}{{\ln a}}\) nên \(\left( {{{\log }_a}x} \right)' = \left( {\frac{{\ln x}}{{\ln a}}} \right)' = \frac{1}{{x\ln a}}\)

a: y=ln(x+1)

=>\(y'=\dfrac{1}{x+1}\)

=>\(y''=\dfrac{1'\left(x+1\right)-1\left(x+1\right)'}{\left(x+1\right)^2}=\dfrac{-1}{\left(x+1\right)^2}\)

b: y=tan 2x

=>\(y'=\dfrac{2}{cos^22x}\)

=>\(y''=\left(\dfrac{2}{cos^22x}\right)'=\dfrac{-2\cdot cos^22x'}{cos^42x}=\dfrac{-2\cdot2\cdot cos2x\left(cos2x\right)'}{cos^42x}\)

\(=\dfrac{4\cdot2\cdot sin2x}{cos^32x}=\dfrac{8\cdot sin2x}{cos^32x}\)

6 tháng 4 2021

a/ \(y=\left(x^3-3x\right)^{\dfrac{3}{2}}\Rightarrow y'=\dfrac{3}{2}\left(x^3-3x\right)^{\dfrac{1}{2}}\left(x^3-3x\right)'=\dfrac{3}{2}\left(3x^2-3\right)\sqrt{x^3-3x}\)

b/ \(y'=5\left(\sqrt{x^3+1}-x^2+2\right)^4\left(\sqrt{x^3+1}-x^2+2\right)'=5\left(\sqrt{x^3+1}-x^2+2\right)^4\left(\dfrac{3x^2}{\sqrt{x^3+1}}-2x\right)\)c/ 

\(y'=14\left(x^6+2x-3\right)^6\left(x^6+2x-3\right)'=14\left(x^6+2x-3\right)^6\left(6x^5+2\right)\)

d/ \(y=\left(x^3-1\right)^{-\dfrac{5}{2}}\Rightarrow y'=-\dfrac{5}{2}\left(x^3-1\right)^{-\dfrac{7}{2}}\left(x^3-1\right)'=-\dfrac{15x^2}{2\sqrt{\left(x^3-1\right)^7}}\)

12 tháng 5 2016

\(y'=\frac{\frac{2}{2x-1}.\sqrt{2x-1}-\frac{1}{\sqrt{2x-1}}\ln\left(2x-1\right)}{2x-1}=\frac{2-\ln\left(2x-1\right)}{\left(2x-1\right)\sqrt{2x-1}}\)