Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Ta chứng minh công thức \(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*)
Với n=1 (*) đúng
Giả sử (*) đúng với n=k, khi đó ta có
\(1^2+2^2+...+k^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) (1)
Ta chứng minh (1) đúng với n=k+1, từ (1) suy ra:
\(1^2+2^2+...+k^2+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)
\(=\left(k+1\right)\left(\frac{k\left(2k+1\right)}{6}+k+1\right)=\left(k+1\right)\frac{2k^2+7k+6}{6}\)
\(=\frac{\left(k+1\right)\left(2k^2+4k+3k+6\right)}{6}=\frac{\left(k+1\right)\left[2k\left(k+2\right)+3\left(k+2\right)\right]}{6}=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)
Theo nguyên lí quy nạp ta có ĐPCM
Áp dụng vào bài toán ta có:
\(B=\frac{98\left(98+1\right)\left(2\cdot98+1\right)}{6}=318549\)
a)\(A=1\cdot2+2\cdot3+...+98\cdot99\)
\(3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+98\cdot99\left(100-97\right)\)
\(3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+98\cdot99\cdot100-97\cdot98\cdot99\)
\(3A=98\cdot99\cdot100=\frac{98\cdot99\cdot100}{3}=323400\)
Bài 3:Tổng là:
(98,99-1,2):1,1+1) x (98,99+1,2) : 2 = 4503,5405
Đáp số:4503,5405
E , Gọi A là biểu thức ta có:
A = 1.2+2.3+3.4+......+99.100
Gấp A lên 3 lần ta có:
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300
H = 1 . 3 + 2 . 4 + 3 . 5 + .... + 97 . 99 + 98 . 100
H = 1( 2 + 1 ) + 2 ( 3 + 1 ) + 3 ( 4 + 1 ) + .... + 97 ( 98 + 1 ) + 98 ( 99 + 1 )
H = 1 . 2 + 1 + 2. 3 + 2 + 2 . 4 + 3 + ... + 97 . 98 + 97 + 98 . 99 + 98
H = ( 1 . 2 + 2 . 3 + 3 . 4 + ... 97 . 98 + 98 . 99 ) + ( 1 + 2 + 3 + .... + 97 + 98 )
H = 323400 + 4851
H = 328251
A = 1.2 + 2.3 + 3.4 +..... + 99.100
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
=> 3A = 1.2.(3-0) + 2.3.(4 - 1) + 3.4.(5 - 2) + … + 99.100. (101 - 98)
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … +99.100.101-98.99.100
=> 3A = 98.99.100
=> A = 99.100.101/3
=> A = 33.100.101 = 333300
không biết