Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1 + 2 + 3 + ... + n
= \(\frac{\left(n+1\right).n}{2}\)
b) 1 + 3 + 5 + 7 + ... + (2n + 1)
= \(\left(2n+1+1\right).\left(\frac{2n+1-1}{2}+1\right):2\)
\(=\left(2n+2\right).\left(\frac{2n}{2}+1\right):2\)
\(=2.\left(n+1\right).\left(n+1\right):2\)
\(=\left(n+1\right)^2\)
c) 2 + 4 + 6 + 8 + ... + 2.n
= 2.(1 + 2 + 3 + 4 + ... + n)
\(=2.\frac{\left(n+1\right).n}{2}\)
= (n + 1).n
P=1+2+3+.....+(n-2)+(n-1)+n
P=n+ (n-1)+1+(n-2)+2+...........
P=n+n+n+.......
Giải
Ta có số hạng là:
( 2n + 1 ) : 2 + 1 = n =1
Khi đó :
S = ( 2n + 1 + 1 ) . ( n+ 1 ) : 2
= 2 . ( n + 1 ) . ( n + 1 )
= (n + 1) . ( n + 1 )
= n + 1
Cái tên.. àk mà thôi -_-
\(a)\) \(1+2+3+4+...+n=\frac{n\left(n+1\right)}{2}\)
\(b)\) \(2+4+6+8+...+2n=\left(\frac{2n-2}{2}+1\right)\left(2n+2\right)=\frac{2n\left(2n+2\right)}{2}=2n\left(n+1\right)\)
\(c)\) \(1+3+5+...+\left(2n+1\right)=\left(\frac{2n+1-1}{2}+1\right)\left(2n+1+1\right)=\frac{\left(2n+2\right)\left(2n+2\right)}{2}=\frac{\left(2n+2\right)^2}{2}\)
\(d)\) \(1+4+7+10+...+2005=\left(\frac{2005-1}{3}+1\right)\left(2005+1\right)=1342014\)
\(e)\) \(2+5+...+2006=\left(\frac{2006-2}{3}+1\right)\left(2006+2\right)=1343352\)
\(g)\) \(1+5+9+...+2001=\left(\frac{2001-1}{4}+1\right)\left(2001+1\right)=1003002\)
Chúc bạn học tốt ~
n = bao nhiêu vậy
sky ấu dè