![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 2i(3 + i)(2 + 4i) = 2i(2 + 14i) = -28 + 4i
b)
c) 3 + 2i + (6 + i)(5 + i) = 3 + 2i + 29 + 11i = 32 + 13i
d) 4 - 3i + = 4 - 3i +
= 4 - 3i +
= (4 + ) - (3 +
)i =
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta xét 3 trường hợp :
* Nếu \(x>4\) thì \(x-3>1\Rightarrow\left(x-3\right)^{2010}>1\Rightarrow\left(x-3\right)^{2010}+\left(x+4\right)^{2012}>1\) mâu thuẫn.
* Nếu \(x< 3\) thì \(x-4< -1\Rightarrow\left(x-4\right)^{2010}>1\Rightarrow\left(x-3\right)^{2010}+\left(x+4\right)^{2012}>1\) mâu thuẫn.
* Nếu \(3< x< 4\) thì \(x-3>1\Rightarrow\left|x-3\right|,\left|x-4\right|\le1\Rightarrow\left(x-3\right)^{2010}< \left(x-3\right),\left(x-4\right)^{2012}\le\left(4-x\right)\)
Do đó \(\left(x-3\right)^{2010}+\left(x-4\right)^{2012}< \left(x-3\right)+\left(4-x\right)=1\) cũng mâu thuẫn
Mặt khác, với \(x=3;x=4\) thì đẳng thức đúng. Vậy ta có điều phải chứng minh
![](https://rs.olm.vn/images/avt/0.png?1311)
i3 = i2 .i = -i; i4 = i2 .i2 = (-1)(-1) = 1; i5 = i4 .i = i
Nếu n = 4q + r, 0 ≤ r < 4 thì
1) in = ir = i nếu r = 1
2) in = ir = -1 nếu r = 2
3) in = ir = -i nếu r = 3
4) in = ir = 1 nếu r = 4
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (3 - 2i)(2 - 3i) = (6 - 6) + (-9 -4)i = -13i;
b) (-1 + i)(3 + 7i) = (-3 - 7) + (-7 + 3)i = -10 -4i;
c) 5(4 + 3i) = 20 + 15i;
d) (-2 - 5i).4i = -8i - 20i2 = -8i -20(-1) = 20 - 8i
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (3 + 2i)[(2 – i) + (3 – 2i)]
= (3 + 2i)(5 – 3i) = 21 + i
b)(4−3i)+1+i2+i=(4−3i)+(1+i)(2−i)5=(4−3i)(35+15i)=(4+35)−(3−15)i=235−145i(4−3i)+1+i2+i=(4−3i)+(1+i)(2−i)5=(4−3i)(35+15i)=(4+35)−(3−15)i=235−145i
c) (1 + i)2 – (1 - i)2 = 2i – (-2i) = 4i
d) 3+i2+i−4−3i2−i=(3+i)(2−i)5−(4−3i)(2+i)5=7−i5−11−2i5=−45+15i
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ( 3 - 4 i ) 2 = 3 2 − 2.3.4i + ( 4 i ) 2 = −7 − 24i
b) ( 2 + 3 i ) 3 = 2 3 + 3. 2 2 .3i + 3.2. ( 3 i ) 2 + ( 3 i ) 3 = −46 + 9i
c) [ ( 4 + 5 i ) – ( 4 + 3 i ) ] 5 = ( 2 i ) 5 = 32i
d) ( 2 - i 3 ) 2 = −1 − 2i 6
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có (3 - 2i)z + (4 + 5i) = 7 + 3i <=> (3 - 2i)z = 7 + 3i - 4 - 5i
<=> z = <=> z = 1. Vậy z = 1.
b) Ta có (1 + 3i)z - (2 + 5i) = (2 + i)z <=> (1 + 3i)z -(2 + i)z = (2 + 5i)
<=> (1 + 3i - 2 - i)z = 2 + 5i <=> (-1 + 2i)z = 2 + 5i
z =
Vậy z =
c) Ta có + (2 - 3i) = 5 - 2i <=>
= 5 - 2i - 2 + 3i
<=> z = (3 + i)(4 - 3i) <=> z = 12 + 3 + (-9 + 4)i <=> z = 15 -5i
4 + 5 i - 4 + 3 i 5 = 2 i 5 = 32i