Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có:
\(\dfrac{1}{\sqrt{n+1}+\sqrt{n}}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\)
\(\Rightarrow A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)
a.\(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+\sqrt{2018}}=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\dfrac{\sqrt{2019}-\sqrt{2018}}{\left(\sqrt{2019}+\sqrt{2018}\right)\left(\sqrt{2019}-\sqrt{2018}\right)}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)
Bài 1:Với mọi n∈N*,ta có:
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
Do đó :
A=\(\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}=1-\dfrac{1}{10}=\dfrac{9}{10}\)
Bài 2:
\(A=\left(3\sqrt{2}-3+4\sqrt{2}+2-4-2\sqrt{2}\right)\cdot\left(2\sqrt{2}+2\right)\)
\(=\left(5\sqrt{2}-5\right)\left(2\sqrt{2}+2\right)\)
=10
\(\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}=\dfrac{1}{3}\left(\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)
\(\Rightarrow A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)
\(\Rightarrow A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)\)
\(\Rightarrow A=\dfrac{3n}{6\left(3n+2\right)}=\dfrac{n}{6n+4}\)
\(\dfrac{1}{\left(2n-1\right)\left(2n+1\right)\left(2n+3\right)}=\dfrac{1}{4}\left(\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}-\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\right)\)
\(\Rightarrow B=\dfrac{1}{4}\left(\dfrac{1}{1.3}-\dfrac{1}{3.5}+\dfrac{1}{3.5}-\dfrac{1}{3.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}-\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\right)\)
\(\Rightarrow B=\dfrac{1}{4}\left(\dfrac{1}{1.3}-\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\right)\)
\(\Rightarrow B=\dfrac{n\left(n+2\right)}{3\left(2n+1\right)\left(2n+3\right)}\)
\(\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}}=\sqrt{\dfrac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}}\)
\(=\sqrt{\dfrac{n^2\left(n+1\right)^2+2n^2+2n+1}{n^2\left(n+1\right)^2}}=\sqrt{\dfrac{n^2\left(n+1\right)^2+2n\left(n+1\right)+1}{n^2\left(n+1\right)^2}}\)
\(=\sqrt{\dfrac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}}=\dfrac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\dfrac{1}{n\left(n+1\right)}=1+\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(\Rightarrow C=1+\dfrac{1}{1}-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{2018}-\dfrac{1}{2019}\)
\(\Rightarrow C=2019-\dfrac{1}{2019}\)
Lời giải:
Xét \(1+\frac{1}{n^2}+\frac{1}{(n+1)^2}=(1+\frac{1}{n})^2-\frac{2}{n}+\frac{1}{(n+1)^2}\)
\(=\left(\frac{n+1}{n}\right)^2+\frac{1}{(n+1)^2}-\frac{2}{n}\)
\(=\left(\frac{n+1}{n}\right)^2+\frac{1}{(n+1)^2}-2.\frac{n+1}{n}.\frac{1}{n+1}\)
\(=\left(\frac{n+1}{n}-\frac{1}{n+1}\right)^2=\left(1+\frac{1}{n(n+1)}\right)^2\)
\(\Rightarrow \sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}=1+\frac{1}{n(n+1)}\)
Do đó:
\(A=1+\frac{1}{1.2}+1+\frac{1}{2.3}+...+1+\frac{1}{2018.2019}\)
\(=2018+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2018.2019}\)
\(=2018+\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{2019-2018}{2018.2019}=2018+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(=2019-\frac{1}{2019}\)
co cong thuc \(\sqrt{\dfrac{1}{1}+\dfrac{1}{a^2}+\dfrac{1}{\left(a+1\right)^2}}=\dfrac{1}{1}+\dfrac{1}{a}-\dfrac{1}{a+1}\) ban tu chung minh nha
\(=1+\dfrac{1}{1}-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+...+1+\dfrac{1}{2018}-\dfrac{1}{2019}\)
=2017-1/2019
Lời giải:
Xét số hạng tổng quát:
\(\frac{1}{(n+1)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n(n+1)}(\sqrt{n+1}+\sqrt{n})}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}(n+1-n)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Do đó:
\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2018}}-\frac{1}{\sqrt{2019}}\)
\(=1-\frac{1}{\sqrt{2019}}\)
\(\sqrt{1+\dfrac{1}{a^2}+\dfrac{1}{\left(a+1\right)^2}}=\sqrt{\left(1+\dfrac{1}{a}\right)^2-\dfrac{2}{a}+\dfrac{1}{\left(a+1\right)^2}}=\sqrt{\left(\dfrac{a+1}{a}\right)^2-2.\dfrac{a+1}{a}.\dfrac{a}{a+1}+\dfrac{1}{\left(a+1\right)^2}}=\sqrt{\left(1+\dfrac{1}{a}-\dfrac{1}{a+1}\right)^2}=1+\dfrac{1}{a}-\dfrac{1}{a+1}\left(a>0\right)\)
Áp dụng điều này vào bài toán , ta có :
\(P=\sqrt{1^2+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1^2+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+...+\sqrt{1^2+\dfrac{1}{2018^2}+\dfrac{1}{2019^2}}=1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{2018}-\dfrac{1}{2019}=2017+\dfrac{1}{2}-\dfrac{1}{2019}\)
1)
DKCĐ: a>0,\(a\ne1\)
\(=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}}{a}-\dfrac{1}{a}\right)\)\(=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right)\left(\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\right)\)\(=\dfrac{\sqrt{1+a}+\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}.\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\\ =\dfrac{1+a+1-a+2\sqrt{\left(1+a\right)\left(1-a\right)}}{\left(1+a\right)-\left(1-a\right)}\cdot\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\)\(=\dfrac{2\left(\sqrt{\left(1+a\right)\left(1-a\right)}+1\right)}{2a}\cdot\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\\ =\dfrac{\sqrt{\left(1+a\right)\left(1-a\right)}+1}{a}\cdot\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\\ =\dfrac{\left(\sqrt{\left(1+a\right)\left(1-a\right)}+1\right)\left(\sqrt{\left(1+a\right)\left(1-a\right)}-1\right)}{a^2}\\ =\dfrac{\left(1+a\right)\left(1-a\right)-1}{a^2}\\ =\dfrac{1-a^2-1}{a^2}\\ =\dfrac{-a^2}{a^2}\\ =-1\)
bạn nên tự nghiên cứu rồi giải đi chứ bạn đưa 1 loạt thế thì ai rảnh mà giải, với lại cứ bài gì không biết chưa chịu suy nghĩ đã hỏi rồi thì tiến bộ sao được, đúng không
\(\text{a) }\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}\\ =\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)-2\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)}\\ =\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\cdot\dfrac{x+y+z}{xyz}}\\ =\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\)
\(\text{b) }\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+...+\sqrt{1+\dfrac{1}{2017^2}+\dfrac{1}{2018^2}}\\ =1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{2017}-\dfrac{1}{2018}\\ =2016+\dfrac{1}{2}-\dfrac{1}{2018}\\ =\dfrac{2034698}{1009}\)
Lời giải:
Xét số hạng tổng quát:
\(\sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}=\sqrt{\frac{n^2+1}{n^2}+\frac{1}{(n+1)^2}}\\ =\sqrt{\frac{(n+1)^2}{n^2}-\frac{2n}{n^2}+\frac{1}{(n+1)^2}}\\ =\sqrt{\frac{(n+1)^2}{n^2}-\frac{2}{n}+\frac{1}{(n+1)^2}}\\ =\sqrt{(\frac{n+1}{n}-\frac{1}{n+1})^2}=\frac{n+1}{n}-\frac{1}{n+1}=1+\frac{1}{n}-\frac{1}{n+1}\)
Do đó:
\(C=1+\frac{1}{1}-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+....+1+\frac{1}{2018}-\frac{1}{2019}\\ =(1+1+...+1)+(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2018})-(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019})\\ =2018+1-\frac{1}{2019}=2019-\frac{1}{2019}\)
đáp án : 2019-1/2019