K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

\(B=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2016}-\dfrac{1}{2017}\)

\(B=1-\dfrac{1}{2017}\)

\(B=\dfrac{2017}{2017}-\dfrac{1}{2017}\)

\(B=\dfrac{2016}{2017}\)

9 tháng 5 2017

câu này truong minh lm hoai a

hihahiha

17 tháng 4 2017

\(\Rightarrow\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)

\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)

\(\Rightarrow\dfrac{1}{x+1}=1-\dfrac{2016}{2017}\)

\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2017}\)

\(\Rightarrow x+1=2017\)

\(\Rightarrow x=2017-1=2016\)

Vậy x = 2016

17 tháng 4 2017

\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+\(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{2016}{2017}\)

1 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)- \(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)- \(\dfrac{1}{4}\)+ \(\dfrac{1}{x\left(x+1\right)}\)=\(\dfrac{2016}{2017}\)

\(\dfrac{3}{4}\)+\(\dfrac{1}{x\left(x+1\right)}\)=\(\dfrac{2016}{2017}\)

\(\dfrac{1}{x\left(x+1\right)}\)= \(\dfrac{2013}{8068}\)

Bn tự lm tiếp nhé!!! Sorry mk đang vội

27 tháng 3 2017

Bài 2:

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2016}{2017}\)

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)

\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)

\(\Leftrightarrow\dfrac{1}{x+1}=1-\dfrac{2016}{2017}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2017}\)

\(\Leftrightarrow x+1=2017\Leftrightarrow x=2016\)

Vậy \(x=2016\)

25 tháng 12 2018

2.x=2016

26 tháng 4 2023

\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{19\cdot20}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

\(=1-\dfrac{1}{20}=\dfrac{19}{20}\)

26 tháng 4 2023

\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+....+\dfrac{1}{19\cdot20}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{20}\)

\(A=1-\dfrac{1}{20}\)

\(A=\dfrac{19}{20}\)

 

14 tháng 8 2017

a, \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)

\(\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)

\(\dfrac{9}{10}.100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)

\(90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)

\(\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\) \(=-88\)

\(x+\dfrac{206}{100}=\dfrac{-5}{176}\)

\(x=\dfrac{-5}{176}-\dfrac{206}{100}\)

\(x=\dfrac{-9198}{4400}\)

14 tháng 8 2017

a) \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\dfrac{9}{10}.100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=90-89\)

\(\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=1\)

\(\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)=\dfrac{1}{2}\)

\(x+\dfrac{206}{100}=5\)

\(x=5-\dfrac{206}{100}\)

\(x=\dfrac{147}{50}\)

Vậy \(x=\dfrac{147}{50}\)

5 tháng 4 2022

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}\)

=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\)

=\(1-\dfrac{1}{5}\)

=\(\dfrac{4}{5}\)

5 tháng 4 2022

trình bày ra xem nào tính máy tính ai chả tính đc

Nhận xét thấy:

\(\dfrac{1}{1.2}\)= 1-\(\dfrac{1}{2}\); \(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\);...

Ta có

A= 1-\(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)

A= 1- \(\dfrac{1}{6}\)

A= \(\dfrac{5}{6}\)

Vậy A= \(\dfrac{5}{6}\)

26 tháng 4 2017

CAU NAY RAT DE NHA BAN

A=\(\dfrac{1}{1}\)-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)

A=1-\(\dfrac{1}{6}\)

=>A=\(\dfrac{5}{6}\)

25 tháng 7 2017

\(a,\dfrac{3}{4}-1\dfrac{1}{2}+0,5:\dfrac{5}{12}.\)

\(=\dfrac{3}{4}-\dfrac{3}{2}+\dfrac{1}{2}:\dfrac{5}{12}.\)

\(=\dfrac{3}{4}-\dfrac{6}{4}+\dfrac{1}{2}.\dfrac{12}{5}.\)

\(=-\dfrac{3}{4}+\dfrac{12}{10}.\)

\(=-\dfrac{3}{4}+\dfrac{6}{5}.\)

\(=-\dfrac{15}{20}+\dfrac{24}{20}=\dfrac{9}{20}.\)

Vậy.....

\(b,\left(-2\right)^2-1\dfrac{5}{27}.\left(-\dfrac{3}{2}\right)^3.\)

\(=4-1\dfrac{5}{27}.\left(-\dfrac{27}{8}\right).\)

\(=4-\dfrac{32}{27}.\left(-\dfrac{27}{8}\right).\)

\(=4-\left(-4\right).\)

\(=4+4=8.\)

Vậy.....

\(c,\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}.\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}.\)

\(=\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{99}-\dfrac{1}{99}\right)-\dfrac{1}{100}.\)

\(=\dfrac{1}{2}+0+0+...+0-\dfrac{1}{100}.\)

\(=\dfrac{1}{2}-\dfrac{1}{100}.\)

\(=\dfrac{50}{100}-\dfrac{1}{100}=\dfrac{49}{100}.\)

Vậy.....