Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{-5}{8}+\dfrac{7}{12}=\dfrac{-15}{24}+\dfrac{14}{24}=\dfrac{-1}{24}\)
b: \(=\dfrac{3}{4}-\dfrac{5}{6}+\dfrac{11}{12}=\dfrac{9}{12}-\dfrac{10}{12}+\dfrac{11}{12}=\dfrac{10}{12}=\dfrac{5}{6}\)
c: \(=\dfrac{6}{36}-\dfrac{1}{36}=\dfrac{5}{36}\)
d: \(=\dfrac{5}{12}+\dfrac{5}{12}=\dfrac{10}{12}=\dfrac{5}{6}\)
e: \(=\dfrac{-8}{56}-\dfrac{7}{56}=\dfrac{-15}{56}\)
f: \(=\dfrac{-5}{15}+\dfrac{3}{25}=\dfrac{-25}{75}+\dfrac{9}{75}=\dfrac{-16}{75}\)
a, \(\dfrac{10}{17}\) + \(\dfrac{5}{-13}\) - \(\dfrac{11}{25}\) + \(\dfrac{7}{17}\) - \(\dfrac{8}{13}\)
= ( \(\dfrac{10}{17}\) + \(\dfrac{7}{17}\)) - ( \(\dfrac{5}{13}\) + \(\dfrac{8}{13}\)) - \(\dfrac{11}{25}\)
= \(\dfrac{17}{17}\) - \(\dfrac{13}{13}\) - \(\dfrac{11}{25}\)
= 1 - 1 - \(\dfrac{11}{25}\)
= - \(\dfrac{11}{25}\)
b, 0,3 - \(\dfrac{93}{7}\) - 70% - \(\dfrac{4}{7}\)
= 0,3 - 0,7 - ( \(\dfrac{93}{7}+\dfrac{4}{7}\))
= - 0,4 - \(\dfrac{97}{7}\)
= - \(\dfrac{2}{5}\) - \(\dfrac{97}{7}\)
= - \(\dfrac{499}{35}\)
thôi chịu nhiều quá ai mà làm đc tự đi mà làm hỏi thì hỏi thì hỏi ít thôi người ta còn trả lời đc .
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(7A-A=\left(7+7^2+7^3+7^4+...+7^{2008}\right)-\left(1+7+7^2+7^3+...+7^{2007}\right)\)
\(6A=7^{2008}-1\)
\(A=\frac{7^{2008}-1}{6}\)
Tương tự, \(B=\frac{4^{101}-1}{3},C=\frac{3^{101}-1}{2}\).
\(D=7+7^3+7^5+7^7+...+7^{99}\)
\(7^2.D=7^3+7^5+7^7+7^9+...+7^{101}\)
\(\left(7^2-1\right)D=\left(7^3+7^5+7^7+7^9+...+7^{101}\right)-\left(7+7^3+7^5+7^7+...+7^{99}\right)\)
\(48D=7^{101}-7\)
\(D=\frac{7^{101}-7}{48}\)
Tương tự, \(E=\frac{2^{9011}-2}{3}\)
Mình làm mẫu 1 bài rùi bạn tự giải những bài còn lại nha
1, 7A = 7+7^2+7^3+....+7^2008
6A = 7A - A = (7+7^2+7^3+....+7^2008)-(1+7+7^2+....+7^2007) = 7^2008-1
=> A = (7^2008-1)/6
Tk mk nha
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(\Rightarrow7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2008}\right)-\left(1+7+7^2+...+7^{2007}\right)\)
\(\Rightarrow6A=7^{2008}-1\)
\(\Rightarrow A=\frac{7^{2008}-1}{6}\)