Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có bđt sau : \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) (bạn tự c/m)
Áp dụng : \(\frac{\sqrt{2005}+\sqrt{2007}}{2}< \sqrt{\frac{2005+2007}{2}}\)
\(\Rightarrow\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\)
2) Xét : \(A-B=2\sqrt{2014}-\left(\sqrt{2013}+\sqrt{2015}\right)\)
Theo câu 1) , ta dễ dàng c/m được \(2\sqrt{2014}>\sqrt{2013}+\sqrt{2015}\)
Do đó A - B > 0 => A > B
2) Bình phương 2 vế ta có:
\(A^2=2014-2013=1\)
\(B^2=2015-2014=1\)
=>A=B
1: \(\left(\sqrt{3}+\sqrt{7}\right)^2=10+2\sqrt{21}\)
\(\left(2+\sqrt{6}\right)^2=10+4\sqrt{6}\)
mà 2 căn 21<4 căn 6
nên căn 3+căn 7<2+căn 6
2: \(\sqrt{7}-\sqrt{5}=\dfrac{2}{\sqrt{7}+\sqrt{5}}\)
\(\sqrt{6}-2=\dfrac{2}{\sqrt{6}+2}\)
mà \(\sqrt{7}+\sqrt{5}>\sqrt{6}+2\)
nên \(\sqrt{7}-\sqrt{5}< \sqrt{6}-2\)
3: \(\sqrt{11}-\sqrt{7}=\dfrac{4}{\sqrt{11}+\sqrt{7}}\)
\(\sqrt{7}-\sqrt{3}=\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
mà căn 11>căn 3
nên \(\sqrt{11}-\sqrt{7}< \sqrt{7}-\sqrt{3}\)
Ta có: \(4\left(1+\frac{\sqrt{3}}{2}\right)=3+2\sqrt{3}+1=\left(\sqrt{3}+1\right)^2\Rightarrow1+\frac{\sqrt{3}}{2}=\left(\frac{\sqrt{3}+1}{2}\right)^2\)
Tương tự \(1-\frac{\sqrt{3}}{2}=\left(\frac{\sqrt{3}-1}{2}\right)^2\)
\(VT=\frac{\left(\frac{\sqrt{3}+1}{2}\right)^2}{1+\frac{\sqrt{3}+1}{2}}+\frac{\left(\frac{\sqrt{3}-1}{2}\right)^2}{1-\frac{\sqrt{3}-1}{2}}=\frac{\frac{\left(\sqrt{3}+1\right)^2}{4}}{\frac{3+\sqrt{3}}{2}}+\frac{\frac{\left(\sqrt{3}-1\right)^2}{4}}{\frac{3-\sqrt{3}}{2}}\)\(=\frac{\left(\sqrt{3}+1\right)^2}{2.\sqrt{3}\left(\sqrt{3}+1\right)}+\frac{\left(\sqrt{3}-1\right)^2}{2.\sqrt{3}\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+1}{2\sqrt{3}}+\frac{\sqrt{3}-1}{2\sqrt{3}}=\frac{\sqrt{3}+1+\sqrt{3}-1}{2\sqrt{3}}=1=VP\)
a,
\(\sqrt{\sqrt{2019}+\sqrt{2018}}\cdot\sqrt{\sqrt{2019}-\sqrt{2018}}\\ =\sqrt{\left(\sqrt{2019}+\sqrt{2018}\right)\left(\sqrt{2019}-\sqrt{2018}\right)}\\ =\sqrt{\left(\sqrt{2019}\right)^2-\left(\sqrt{2018}\right)^2}\\ =\sqrt{2019-2018}=\sqrt{1}=1\)
b, Gọi BT cần tìm là A
Ta có:
\(A^2=4+\sqrt{15}+4-\sqrt{15}-2\sqrt{\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}\\ =8-2\sqrt{4^2-\left(\sqrt{15}\right)^2}\\ =8-2\sqrt{16-15}=8-2\cdot1=8-2=6\)
Suy ra \(A=\sqrt{6}\).
Chúc bạn học tốt nha.
\(\sqrt{7+2\sqrt{3}}-\sqrt{7-2\sqrt{3}};\left(\sqrt{7+\sqrt{12}}-\sqrt{7-\sqrt{12}}\right)^2=7+\sqrt{12}-\sqrt{12}+7-2\sqrt{\left(7+\sqrt{12}\right)\left(7-\sqrt{12}\right)}=14-2\sqrt{37}\Rightarrow\sqrt{7+\sqrt{12}}-\sqrt{7-\sqrt{12}}=\sqrt{14-2\sqrt{37}}\)
a) \(\sqrt{10+2\sqrt{14}}\cdot\sqrt{10+2\sqrt{14}}\)
\(=\sqrt{\left(10+2\sqrt{14}\right)^2}\)
\(=10+2\sqrt{14}\)
b) \(\sqrt{7+\sqrt{12}}-\sqrt{7-\sqrt{12}}\)
\(=\sqrt{\left(\sqrt{7+\sqrt{12}}-\sqrt{7-\sqrt{12}}\right)^2}\)
\(=\sqrt{7+\sqrt{12}+7-\sqrt{12}-2\sqrt{\left(7+\sqrt{12}\right)\left(7-\sqrt{12}\right)}}\)
\(=\sqrt{14-2\sqrt{49-12}}\)
\(=\sqrt{14-2\sqrt{37}}\)
\(A^2=\left(\sqrt{13+4\sqrt{3}}+\sqrt{13-4\sqrt{3}}\right)^2\)
\(=13+4\sqrt{3}+13-4\sqrt{3}+2\sqrt{\sqrt{13+4\sqrt{3}}\cdot\sqrt{13-4\sqrt{3}}}\)
\(=26+2\sqrt{13^2-\left(4\sqrt{3}\right)^2}\)
\(=26+2\sqrt{121}=26+22=48\)
\(\Rightarrow A^2=48\Rightarrow A=\sqrt{48}\)
\(a,\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right).\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4-\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=\left(4+\sqrt{15}\right).2\left(4-\sqrt{15}\right)\)
\(=2\)
\(b,\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
Đáp số : 44,62893785
\(=44,62893785\)