K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}\)

\(A=1-\frac{1}{64}\)

\(A=\frac{63}{64}\)

\(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(3B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)

\(3B-B=1-\frac{1}{243}\)

\(2B=\frac{242}{243}\)

\(B=\frac{242}{243}\div2\)

\(B=\frac{121}{243}\)

21 tháng 7 2018

a.A=1/2+1/4+1/8+1/16+1/32+1/64

 A= \(\frac{1}{1\cdot2}+\frac{1}{2\cdot2}+\frac{1}{2\cdot4}+\frac{1}{4\cdot4}+\frac{1}{4\cdot8}+\frac{1}{8\cdot8}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{8}\)

= 1 - 1/8 = 7/8

b.B=1/3+1/9+1/27+1/81+1/243

B= \(\frac{1}{1\cdot3}+\frac{1}{3\cdot3}+\frac{1}{3\cdot9}+\frac{1}{9\cdot9}+\frac{1}{9\cdot27}\)

= 1 - 1/27 = 26/27

1 tháng 12 2023

😵

1 tháng 12 2023

           A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\)

     2 \(\times\) A = 1   + \(\dfrac{1}{2}\) +  \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)

 2 \(\times\) A - A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) - (\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\))

        A      = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) - \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\) - \(\dfrac{1}{8}\) - \(\dfrac{1}{16}\) - \(\dfrac{1}{32}\)

        A       =  1 - \(\dfrac{1}{32}\)

        A       =   \(\dfrac{31}{32}\)

22 tháng 10 2020

bài 1 tính nhanh

mik xin sửa đề câu a thành thế này ~

\(a,\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)

đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)

 \(A\cdot2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\) 

\(A\cdot2-A=\) (  \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\) )  - (  \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\) )

\(A=1-\frac{1}{256}\)

\(A=\frac{255}{256}\)

\(b,\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

đặt \(B=\) \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\) 

     \(B\cdot3=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(B\cdot3-B=\)  ( \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)) - \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\) ) 

\(B\cdot2=\) \(1-\frac{1}{729}\)

\(B\cdot2=\frac{728}{729}\)

\(B=\frac{728}{729}:2\)

\(B=\frac{364}{729}\) 

\(c,\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)

ĐẶT \(C=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)

    \(C=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\)

\(C=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(C=\frac{1}{1}-\frac{1}{6}\)

\(C=\frac{5}{6}\)

15 tháng 11 2020

Cảm ơn bạn nhé

16 tháng 5 2015

1+ 1 /3+1/9+1/27+1/81+1/243+1/729.
Đặt:
S = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 
Nhân S với 3 ta có:
S x 3 = 3 +1+ 1/3 + 1/9 + 1/27 + 1/81
Vậy: 
S x 3 - S = 3 - 1/243
2S = 728/243
S = 364/243

tick đúng nha

4 tháng 8 2017

=364/243

17 tháng 10 2021

F*** you bich

DD
16 tháng 10 2021

\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

\(3\times A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(3\times A-A=\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\right)\)

\(2\times A=1-\frac{1}{729}=\frac{728}{729}\)

\(A=\frac{364}{729}\)

\(A=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2048}\)

\(A=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+...+\left(\frac{1}{1024}-\frac{1}{2048}\right)\)

\(A=1-\frac{1}{2048}\)

\(\Rightarrow\)\(A=\frac{2047}{2048}\)

\(3B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

\(3B-B=1-\frac{1}{2187}\)

\(2B=\frac{2186}{2187}\)

\(\Rightarrow B=\frac{2186}{4374}=\frac{1093}{2187}\)

20 tháng 10 2017

a) 

\(\frac{32+16+8+4+2+1+128}{64}\)

\(\frac{191}{64}\)

B)

\(\frac{81+27+9+3+1+243}{243}\)

\(\frac{364}{243}\)

Mình lười làm qua :(

20 tháng 10 2017

trình bày cách làm với ạ

b: A=1/3+1/9+...+1/3^10

=>3A=1+1/3+...+1/3^9

=>A*2=1-1/3^10=(3^10-1)/3^10

=>A=(3^10-1)/(2*3^10)

c: C=3/2+3/8+3/32+3/128+3/512

=>4C=6+3/2+...+3/128

=>3C=6-3/512

=>C=1023/512

d: A=1/2+...+1/256

=>2A=1+1/2+...+1/128

=>A=1-1/256=255/256

a) = \(\frac{127}{96}\)

b) = \(\frac{255}{256}\)

c) Mik bỏ nha

d) = \(\frac{1023}{512}\)

e) = \(\frac{2343}{625}\)

10 tháng 8 2017

bạn có thể trả lời rõ ra được ko