Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{3}.\frac{4}{5}+\frac{1}{3}.\frac{4}{5}=\frac{4}{5}\left(\frac{2}{3}+\frac{1}{3}\right)=\frac{4}{5}.\frac{3}{3}=\frac{4}{5}.1=\frac{4}{5}\)
\(\frac{1}{2}:\frac{3}{4}+\frac{1}{6}:\frac{3}{4}=\frac{3}{4}:\left(\frac{1}{2}+\frac{1}{6}\right)=\frac{3}{4}:\frac{2}{3}=\frac{9}{8}\)
\(\frac{2}{3}.\frac{4}{5}-\frac{1}{3}.\frac{4}{5}=\frac{4}{5}\left(\frac{2}{3}-\frac{1}{3}\right)=\frac{4}{5}.\frac{1}{3}=\frac{4}{15}\)
\(\frac{1}{2}:\frac{3}{4}-\frac{1}{6}:\frac{3}{4}=\frac{3}{4}:\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{3}{4}:\frac{1}{3}=\frac{9}{4}\)
\(\frac{2}{3}.\frac{4}{5}+\frac{1}{3}.\frac{4}{5}=\left(\frac{2}{3}+\frac{1}{3}\right).\frac{4}{5}=1.\frac{4}{5}=\frac{4}{5}\)
\(\frac{1}{2}:\frac{3}{4}+\frac{1}{6}:\frac{3}{4}=\frac{1}{2}.\frac{4}{3}+\frac{1}{6}.\frac{4}{3}=\left(\frac{1}{2}+\frac{1}{6}\right).\frac{4}{3}=\frac{2}{3}.\frac{4}{3}=\frac{8}{9}\)
c,d tương tự
\(\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x\left(1-\frac{1}{5}\right)x\left(1-\frac{1}{6}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}\)
\(=\frac{1.2.3.4.5}{2.3.4.5.6}=\frac{1}{6}\)
\(1\frac{1}{2}x1\frac{1}{3}:1\frac{1}{4}:1\frac{1}{5}\)
\(=\frac{3}{2}x\frac{4}{3}:\frac{5}{4}:\frac{6}{5}\)
\(=\frac{3}{2}x\frac{4}{3}x\frac{4}{5}x\frac{5}{6}\)
\(=\frac{4x4}{2x6}=\frac{2x2x4}{2x2x3}=\frac{4}{3}\)
\(1\frac{1}{2}\times1\frac{1}{3}\div1\frac{1}{4}\div1\frac{1}{5}=\frac{3}{2}\times\frac{4}{3}\div\frac{5}{4}\div\frac{6}{5}=\frac{3}{2}\times\frac{4}{3}\times\frac{4}{5}\times\frac{5}{6}\)
\(=\frac{3\times4\times4\times5}{2\times3\times5\times6}=\frac{4}{3}\)
a) 2/9 +1/5 +7/9+4/5
=( 2/9+7/9)+(1/5+4/5)
=1+1=2
b) 1/12+3/16+5/12+5/16
=(1/12 +5/12)+(3/16+5/16)
=1/2 +1/2=1
\(2\frac{3}{4}+1\frac{5}{6}+3\frac{1}{4}+2\frac{1}{6}\)
= \(\frac{11}{4}+\frac{11}{6}+\frac{13}{4}+\frac{13}{6}\)
= \(\left(\frac{11}{4}+\frac{13}{4}\right)+\left(\frac{11}{6}+\frac{13}{6}\right)\)
= \(\frac{24}{4}+\frac{24}{6}\)
= \(6+4\)
= \(10\)