Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
36/1212 = 3/101
13/1313 = 1/101
3/101 + 1/101 = 4/101
Vậy 36/1212 + 13/1313 = 4/101.
Bài 2 :
A = 5/13 + 1/2 + -5/9 + -3/6 + 4/-9
A = 5/13 + 1/2 + -5/9 + -1/2 + -4/9
A = (1/2 + -1/2) + (-5/9 + -4/9) + 5/13
A = 0 + (-1) + 5/13
A = (-1) + 5/13 = -13/13 + 5/13 = 8/13.
Chúc bạn học giỏi nhé.
Gọi psố cần tìm là \(\frac{3}{a}\)
-> \(\frac{-1}{2}< \frac{3}{a}< \frac{1}{2}\)
-> \(\frac{-3}{6}< \frac{3}{a}< \frac{3}{6}\)
-> \(\frac{+3}{-6}< \frac{3}{a}< \frac{3}{6}\)
-> a \(\varepsilon\) { -5;-4;-3;-2;-1;0;1;2;3;4;5}
nhớ cho mình nhé . Chúc bạn học tốt
\(A=\frac{\frac{2}{3}+\frac{2}{5}-\frac{2}{9}}{\frac{4}{3}+\frac{4}{5}-\frac{4}{9}}\)
\(A=\frac{2.\frac{1}{3}+2.\frac{1}{5}-2.\frac{1}{9}}{4.\frac{1}{3}+4.\frac{1}{5}-4.\frac{1}{9}}\)
\(A=\frac{2.\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{9}\right)}{4.\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{9}\right)}\)
\(A=\frac{2}{4}\)
\(A=\frac{1}{2}\)
\(B=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{...89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=8\frac{1}{10}\)
Bài 1:\(A=1-\frac{1}{2}+1-\frac{1}{6}+.......+1-\frac{1}{9900}\)
\(=1-\frac{1}{1.2}+1-\frac{1}{2.3}+........+1-\frac{1}{99.100}\)
\(=99-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\right)=99-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)\)
\(=99-\left(1-\frac{1}{100}\right)=99-\frac{99}{100}=\frac{9801}{100}\)
Bài 2:\(A=\frac{1}{299}.\left(\frac{299}{1.300}+\frac{299}{2.301}+.........+\frac{299}{101.400}\right)\)
\(=\frac{1}{299}.\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+.........+\frac{1}{101}-\frac{1}{400}\right)\)
\(=\frac{1}{299}.\left(1+\frac{1}{2}+......+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-.......-\frac{1}{400}\right)\)
\(=\frac{1}{299}.\left[\left(1+\frac{1}{2}+.......+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+......+\frac{1}{400}\right)\right]\)(đpcm)
1/
\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{9900}\right)\)
\(=\left(1+1+...+1\right)\left(50so\right)-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\right)\)
\(=50-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=50-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=50-\left(1-\frac{1}{100}\right)=49+\frac{1}{100}=\frac{4901}{100}\)
2/
\(=\frac{1}{299}\left(\frac{299}{1.300}+\frac{299}{2.301}+...+\frac{299}{101.400}\right)\)
\(=\frac{1}{299}\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...+\frac{1}{101}-\frac{1}{400}\right)\)
\(=\frac{1}{299}\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]\)
65/18 bạn nhé
bằng 3/11/18 hay là 65/18