Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
a, \(A=1+2^1+2^2+2^3+...+2^{2007}\)
\(\Rightarrow2A=2\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2008}\)
b, Ta có:
\(2A-A=2+2^2+2^3+2^4+...+2^{2008}-\left(1+2+2^2+2^3+...+2^{2007}\right)\)
\(\Rightarrow A=2+2^2+2^3+2^4+...+2^{2008}-1-2-2^2-2^3-...-2^{2007}\)
\(\Rightarrow A=\left(2-2\right)+\left(2^2-2^2\right)+\left(2^3-2^3\right)+...+\left(2^{2007}-2^{2007}\right)+2^{2008}-1\)
\(\Rightarrow A=2^{2008}-1\) (đpcm)
Cho A= 1 + 2^1 + 2^2 + 2^3 + ....... + 2^2007
a) Tính 2A
suy ra 2A= 2 + 2^2 + 2^3 + 2^4 + ....... + 2^2008
b) Chứng minh A = 2^8 - 1
đang nghĩ b
a, S = 1 + 2 + 22 + 23 + ... + 22017
Ta có : 2S = 2 + 22 + 23 +.... + 22018
Lấy 2S - S ta được : S = 22018 - 1
b, Đặt S = 3 + 32 + 33 + ... + 32017
Ta có : 3S = 32 + 33 + ... + 32018
Lấy 3S - S ta được 2S = 32018 -3
=> \(S=\frac{3^{2018}-3}{2}\)
c, Đặt S = 4 + 42 + 43 + ... + 42017
Ta có : 4S = 42 + 43 + ... + 42018
Lấy 4S - S ta được 3S = 42018 - 4
=> \(S=\frac{4^{2018}-4}{3}\)
a, S = 1 + 2 + 22 + 23 + ... + 22017
Ta có : 2S = 2 + 22 + 23 +.... + 22018
Lấy 2S - S ta được : S = 22018 - 1
b, Đặt S = 3 + 32 + 33 + ... + 32017
Ta có : 3S = 32 + 33 + ... + 32018
Lấy 3S - S ta được 2S = 32018 -3
=>
c, Đặt S = 4 + 42 + 43 + ... + 42017
Ta có : 4S = 42 + 43 + ... + 42018
Lấy 4S - S ta được 3S = 42018 - 4
=>
2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29
= (2 + 22 + 23) + (24 +25 + 26) +(27 + 28 + 29)
= (2 + 22 + 23) + 23(2 + 22 + 23) + 26(2 + 22 + 23)
= 14 + 23.14 + 26.14
= 14(1 + 23 + 26) chia hết cho 7 (ĐPCM)
1300
ai bấm sai thì cứ bấm
nhưng mình đúng thì vẫn là thật
a) 2,3.67+2,3
= 2,3.(67+1)
= 2,3.68
= 156,4
b) 3,4.x+x=10,2
(3,4+1) .x = 10,2
4,4.x=10,2
x = 10,2 : 4,4
x = 2,318.....
c) 476-/-2/+23+4^3-25,8
= 476-2+23+4^3-25,8
= 474+23+64-25,8
= 497+64-25,8
= 535,2
d) 2.26.5+3^3-45.2,26
= 260+27-101,7
= 287-101,7
= 185.3
1) A= 43 . 52 / 82
A = (22)3 . 25 / (23)2
A = 26 . 25 / 26
A = 25
2)B) Do a không chia hết cho 5 nên a2 không chia hết cho 5
=> a2 chia 5 dư 1 hoặc 4
- Nếu a2 chia 5 dư 1 => a chia 5 dư 1 hoặc 4
+Với a chia 5 dư 1 => a - 1 chia hết cho 5 => (a - 1) (a + 1) (a^2 + 1) chia hết cho 5
+ Với a chia 5 dư 4 => a + 1 chia hết cho 5 => (a - 1) (a + 1) (a^2 + 1) chia hết cho 5
- Nếu a2 chia 5 dư 4 => a^2 + 1 chia hết cho 5 => (a - 1) (a + 1) (a^2 + 1) chia hết cho 5
=> đpcm
a. C1) 162:42=256:16=16
C2) 162:42=(16:4)2=42=16
b. C1) 252:52=625:25=25
C2) 252:52=(25:5)2=52=25
a. 162 : 42
C1 : = ( 42 ) 2 : 42
= 42.2 : 42
= 44 : 42
= 42 = 16
C2 : = 256 : 16
= 16
b) 252 : 52
= ( 52 ) 2 : 52
= 52.2 : 52
= 54 : 52
= 52 = 25
C2 : = 625 : 25
= 25