Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
\(\frac{6}{11}+\frac{1}{3}+\frac{5}{11}\)
\(=\left(\frac{6}{11}+\frac{5}{11}\right)+\frac{1}{3}\)
\(=\frac{11}{11}+\frac{1}{3}=1+\frac{1}{3}=\frac{3}{3}+\frac{1}{3}=\frac{4}{3}\)
bài 2:
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}\)
\(=\left(\frac{1}{2}+\frac{1}{20}\right)+\left(\frac{1}{6}+\frac{1}{12}\right)\)
\(=\frac{11}{20}+\frac{1}{4}=\frac{11}{20}+\frac{5}{20}=\frac{15}{20}=\frac{3}{4}\)
bài 3:
a) \(\frac{3}{2}\cdot\frac{4}{5}\cdot\frac{2}{3}=\left(\frac{3}{2}\cdot\frac{2}{3}\right)\cdot\frac{4}{5}=1\cdot\frac{4}{5}=\frac{4}{5}\)
b) \(\frac{6}{7}\cdot\frac{5}{3}\cdot\frac{7}{6}=\left(\frac{6}{7}\cdot\frac{7}{6}\right)\cdot\frac{5}{3}=1\cdot\frac{5}{3}=\frac{5}{3}\)
bài 4:
a) \(\frac{2}{5}\cdot\frac{1}{4}+\frac{3}{4}\cdot\frac{2}{5}=\frac{2}{5}\cdot\left(\frac{1}{4}+\frac{3}{4}\right)=\frac{2}{5}\cdot1=\frac{2}{5}\)
b) \(\frac{6}{11}:\frac{2}{3}+\frac{5}{11}:\frac{2}{3}=\left(\frac{6}{11}+\frac{5}{11}\right):\frac{2}{3}=1:\frac{2}{3}=\frac{3}{2}\)
Bài 1:
6/11 + 1/3 + 5/11
= ( 6/11 + 5/11) + 1/3
= 11/11 + 1/3
= 1 + 1/3
= 3/3 +1/3
= 4/3
Bài 2:
1/2 + 1/6 + 1/12 + 1/20
= ( 1/2 + 1/6 + 1/12 ) + 1/20
= ( 6/12 + 2/12 + 1/12 ) + 1/20
=9/12 + 1/20
= 3/4 +1/20
= 15/20 + 1/20
= 16/20 = 4/5
Bài 3:
a) \(\frac{3}{2}\times\frac{4}{5}\times\frac{2}{3}\) \(=\left(\frac{3}{2}\times\frac{2}{3}\right)\times\frac{4}{5}\)\(=1\times\frac{4}{5}=\frac{4}{5}\)
b) \(\frac{6}{7}\times\left(\frac{5}{3}\times\frac{7}{6}\right)\) \(=\frac{6}{7}\times\frac{35}{18}\)\(=\frac{1\times5}{7\times3}=\frac{5}{21}\)
Bài 4:
a) 2/5 x 1/4 + 3/4 x 2/5
= 2/5 x ( 1/4 + 3/4)
= 2/5 x 1
= 2/5
b) 6/11 : 2/3 +5/11 : 2/3
= ( 6/11 + 5/11) x 3/2
= 11/11 x 3/2
= 1 x 3/2
= 3/2
....
\(\frac{4}{5}+\frac{2}{35}\times\frac{7}{2}=\frac{4}{5}+\frac{1}{5}=1\)
\(\frac{4}{5}+\left(\frac{1}{5}-\frac{1}{7}\right):\frac{2}{7}\)
\(=\left(\frac{4}{5}+\frac{1}{5}\right)-\frac{1}{7}:\frac{2}{7}\)
\(=\frac{5}{5}-\frac{1}{2}\)
\(=1-\frac{1}{2}=\frac{1}{2}\)
\(a,\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{2}-\frac{1}{6}=\frac{1}{3}\)
\(b,\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\)
\(=\frac{1\times2\times3}{2\times3\times4}=\frac{1}{4}\)
\(a,\left(\frac{5}{7}+\frac{9}{7}\right)x\frac{21}{28}\)
\(C1:=\frac{14}{7}x\frac{21}{28}=\frac{3}{2}\)
\(C2:=\frac{5}{7}x\frac{21}{28}+\frac{9}{7}x\frac{21}{28}=\frac{15}{28}+\frac{27}{28}=\frac{3}{2}\)
\(b,\frac{4}{5}x\frac{13}{14}+\frac{13}{14}x\frac{1}{5}\)
\(C1:=\frac{26}{35}+\frac{13}{70}=\frac{13}{14}\)
\(C2:=\frac{13}{14}x\left(\frac{4}{5}+\frac{1}{5}\right)=\frac{13}{14}x1=\frac{13}{14}\)
học tốt ~~~
Trả lời
\(\frac{1}{2}:\frac{3}{4}+\frac{1}{6}:\frac{3}{4}\)
\(=\frac{1}{2}.\frac{4}{3}+\frac{1}{6}.\frac{4}{3}\)
\(=\frac{4}{3}.\left(\frac{1}{2}+\frac{1}{6}\right)\)
\(=\frac{4}{3}.\frac{2}{3}\)
\(=\frac{8}{9}\)
Bạn ơi cho mình hỏi là tại sao lại có \(\frac{4}{3}\)ạ
a) \(\frac{3}{5}+\frac{4}{7}+\frac{2}{5}+\frac{1}{7}+\frac{2}{7}\)
\(=\left(\frac{3}{5}+\frac{2}{5}\right)+\left(\frac{4}{7}+\frac{1}{7}+\frac{2}{7}\right)\)
\(=\frac{5}{5}+\frac{7}{7}=1+1=2\)
a) \(\frac{3}{5}+\frac{4}{7}+\frac{2}{5}+\frac{1}{7}+\frac{2}{7}\)
\(=\left(\frac{3}{5}+\frac{2}{5}\right)+\left(\frac{4}{7}+\frac{1}{7}+\frac{2}{7}\right)\)
= 1 + 1
= 2
b) \(\frac{4}{9}+\frac{8}{9}+\frac{12}{9}+\frac{16}{9}+...+\frac{48}{9}+\frac{52}{9}+\frac{56}{9}\)
\(=\frac{4+8+12+16+...+48+52+56}{9}\)
Xét 4 + 8 + 12 + 16 + ... + 48 + 52 + 56
Số các số hạng là:
(56 - 4) : 4 + 1 = 14 (số)
4 + 8 + 12 + 16 + ... + 48 + 52 + 56 = (56 + 4) x 14 : 2 = 420
\(\frac{4+8+12+16+...+48+52+56}{9}=\frac{420}{9}=\frac{140}{3}\)
Cách 1: Tính bình thường, không cần biến đổi gì
Cách 2:
= 1/3 x 1/4 + 1/3 x 1/7
= 1/12 + 1/21 (Chỗ này Vy tự quy đồng)
= 11/84
C1:
( 1/4 + 1/7 ) * 1/3
= 11/28 * 1/3
= 11/84
C2:
( 1/4 + 1/7 ) * 1/3
= ( 1/4 * 1/3 ) + ( 1/7 * 1/3 )
= 1/12 + 1/21 = 11/84
Chúc bạn học tốt! ^-^