Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đã biết: \(1+2+3+...+n=\frac{n.\left(n+1\right)}{2}\)
Ta có: \(A=1+\frac{1}{2}.\left(\frac{2.3}{2}\right)+\frac{1}{3}.\left(\frac{3.4}{2}\right)+...+\frac{1}{20}.\left(\frac{20.21}{2}\right)\)
\(A=1+\frac{3}{2}+\frac{4}{2}+....+\frac{21}{2}\)
\(A=\frac{1}{2}.\left(2+3+....+21\right)\)
Tổng trong ngoặc có:21-2+2=20 (số hạng)
\(=>A=\frac{1}{2}.\left(\frac{\left(21+2\right).20}{2}\right)=\frac{1}{2}.230=115\)
Vậy..........
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right)..................\left(1-\frac{1}{20}\right)\)
=\(\frac{1}{2}.\frac{2}{3}.............\frac{19}{20}\)
=\(\frac{1.2.3..............19}{2.3.4..............20}\)
=\(\frac{1}{20}\)
Ta có:
\(\left\{{}\begin{matrix}\left|x+\frac{1}{2}\right|\ge0\\\left|x+\frac{1}{6}\right|\ge0\\...\\\left|x+\frac{1}{110}\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{110}\right|\ge0\)
\(\Rightarrow11x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{110}\right|\)
=\(x+\frac{1}{2}+x+\frac{1}{6}+...+x+\frac{1}{110}\)
\(=10x+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)\)
Đặt \(A=\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\)
\(\Rightarrow A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{11-10}{10.11}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)
\(\Rightarrow A=1-\frac{1}{11}=\frac{10}{11}\)
\(\Rightarrow10x+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)=10x+A=10x+\frac{10}{11}=11x\)
\(\Rightarrow\frac{10}{11}=11x-10x\)
\(\Rightarrow x=\frac{10}{11}\)
\(\frac{1}{3}+\frac{1}{2.3}\left(1+2\right)+\frac{1}{3.3}\left(1+2+3\right)+...+\frac{1}{3.2015}\left(1+2+3+...+2015\right)=\frac{1}{3}\left[\frac{2}{2}+\frac{1}{2}\left(\frac{2.3}{2}\right)+\frac{1}{3}\left(\frac{3.4}{2}\right)+...+\frac{1}{2015}\left(\frac{2016.2015}{2}\right)\right]=\frac{1}{3}.\frac{1}{2}\left(2+3+4+....+2016\right)=\frac{1}{6}\left(\frac{2016.2017}{2}-1\right)\)
ta có : ( -5/28 +7/4 + 8/35 ) : (- 69/20)
= ( -25/140 + 245/140 + 32/140 ) x (-20/69)
= (252/140) x (-20/69)
= (9/5) x (-20/69)
= (- 12/23)
tính nhanh:
2 x 3/7 + (2/9 - 10/7) - 5/3 x 9
= 6/7 + 2/9 - 10/7 - 5/3 x 9 = 6/7 + 2/9 - 10/7 - 15
= (6/7 - 10/7 ) + (2/9 - 135/9) = ( - 4/7 ) + (-133/9 )
= (- 36/63) + (-931/63)
= (- 967/63)
Ta có, với \(n\) nguyên dương: \(1+2+...+n=\frac{n\left(n+1\right)}{2}\)
Suy ra, \(1-\frac{1}{1+2+...+n}=1-\frac{2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Khi đó:
\(1-\frac{1}{1+2}=\frac{1.4}{2.3}\)
\(1-\frac{1}{1+2+3}=\frac{2.5}{3.4}\)
....
\(1-\frac{1}{1+2+...+2013}=\frac{2012.2015}{2013.2014}\)
\(1-\frac{1}{1+2+...+2014}=\frac{2013.2016}{2014.2015}\)
Suy ra, \(P=\frac{\left(1.2.....2013\right).\left(4.5.....2016\right)}{2.\left(3.4.....2014\right)^2.2015}=\frac{2016}{3.2014}=\frac{336}{1007}\)
\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+...+20\right)\)
\(=1+1,5+2+2,5+...+10+10,5\)
Dãy số trên có số các số hạng là:
\(\frac{10,5-1}{0,5}+1=20\)(số)
\(\Rightarrow B=\frac{20.\left(1+10,5\right)}{2}=115\)
Vậy B=115