Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3+3^2+3^3+...+3^{100}\)
\(=>3B=3^2+3^3+...+3^{100}+3^{101}\)
\(3B-B=\left(3^2+3^3+...+3^{100}+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(2B=3^{101}-3\)
Ta có: \(3^{101}-3+3=3^n\)
\(=>3^{101}=3^n\)
\(n=101\)
ta có:
3b= 3^2+3^3+3^4+.......+3^101
3b-b= 3^101-3
vậy 3^n=101
1) 3B - B = (32 + 33 + 34 + ... + 3101) - (3 + 32 + 33 + ... + 3100)
2B = 3101 - 3 => 2B + 3 = 3101 => n = 101
2) 52.C - C = (53 + 55 + 57 + 59 + ... + 5103) - (5 + 53 + 55 + 57 + ... + 5101)
24C = 5103 - 5
C =\(\frac{5^{103}-5}{24}\).Tương tự,\(D=\frac{13^{101}-13}{168}\Rightarrow C+D=\frac{5^{103}-5}{24}+\frac{13^{101}-13}{168}=\frac{7.\left(5^{103}-5\right)+\left(13^{101}-13\right)}{168}=\frac{7.5^{103}+13^{101}-48}{168}\)
Ta có:
B=3+3^2+3^3+.......+3^200
3B=3(3+3^2+3^3+.......+3^200)
3B= 3^2+3^3+.......+3^200+3^201
-
B=3+3^2+3^3+.......+3^200
2B=3^201-3
2B+3=3^201
Mà đề bài cho 2B+3=3^n
=> n=201
Vậy .........
Ta có:
B=3+3^2+3^3+.......+3^200
3B=3(3+3^2+3^3+.......+3^200)
3B= 3^2+3^3+.......+3^200+3^201
-
B=3+3^2+3^3+.......+3^200
2B=3^201-3
2B+3=3^201
Mà đề bài cho 2B+3=3^n
=> n=201
Vậy .........
A = 3 + 32 + 33 + ... + 3100
3A = 32 + 33 + 34 + ... + 3101
3A - A = 3101 - 3
2A = 3101 - 3
Ta có:
2A + 3 = 3n
3101 - 3 +3 = 3n
3101 = 3n
=> n = 101
Vậy n = 101
\(B=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3B=3\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow3B=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3B-B=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+3^3+3^{100}\right)\)
\(\Rightarrow2B=3^{101}-3\)
Mà \(2B+3=3^n\)
\(\Rightarrow3^{101}-3+3=3^n\)
\(\Rightarrow3^{101}=3^n\)
\(\Rightarrow n=101\)
Vậy \(n=101\)
Ta có :
\(B\) = \(3\) + \(3^2\) + \(3^3\) + ........ + \(3^{100}\) ( 100 số hạng)
\(3\)\(B\)= \(3^2\) + \(3^3\) + .............+ \(3^{100}\) + \(3^{101}\)
2B = \(3^{101}\) - 3
=> 2B + 3 = \(3^{101}\)
\(3^{101}\) = \(3^n\)
=> n = 101
Vậy n = 101 là giá trị cần tìm