Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4B=1.2.3.4+2.3.4.4+...+(n-1)n(n+1).4
=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+(n-1)n(n+1)(n+2)-[(n-2)(n-1)n(n+1)]
=(n-1)n(n+1)(n+2)-0.1.2.3=(n-1)n(n+1)(n+2)
=>B=(n-1)n(n+1)(n+2)/4
k nha
Ta có : B=1.2.3.4+2.3.4.4+....+(n-1)n(n+1).4
= 1.2.3.4 + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + (n-1)n(n+1)[(n+2)-(n-2)]
=1.2.3.4 +2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + .... + (n-1)n(n+1).(n+2) - (n-2).(n-1).n(n+1)
= ( 1.2.3.4 - 1.2.3.4 ) + ( 2.3.4.5 - 2.3.4.5 ) + .... + ( n-1).n.(n+1).(n+2)
= 0 + 0 + 0 + ... + ( n-1).n.(n+1).(n+2)
= ( n-1).n.(n+1).(n+2)
Vậy B = ( n-1).n.(n+1).(n+2)
\(S_n=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+....+\dfrac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
\(S_n=\dfrac{1}{3}\left(\dfrac{1}{1.2.3}-\dfrac{1}{2.3.4}-\dfrac{1}{3.4.5}+....+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}-\dfrac{1}{n\left(n+2\right)\left(n+3\right)}\right)\)\(S_n=\dfrac{1}{3}\left(\dfrac{1}{2.3.4}-\dfrac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right)\)
\(S_n=\dfrac{1}{3}\left(\dfrac{1}{24}-\dfrac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right)\)
\(S_n=\dfrac{1}{72}-\dfrac{1}{3\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
Đặt A = \(1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3....n}\)
Ta có: \(\frac{1}{1.2}=\frac{1}{1.2}\)
\(\frac{1}{1.2.3}=\frac{1}{2.3}\)
\(\frac{1}{1.2.3.4}< \frac{1}{3.4}\)
..............
\(\frac{1}{1.2.3....n}< \frac{1}{\left(n-1\right)n}\)
Cộng vế với vế ta được:
\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1+1-\frac{1}{n}=2-\frac{1}{n}< 2\)(đpcm)