K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 9 2022

Lời giải:

a. 

$(x-y)^2+(-x+y-z)^2-2(x-y)(x-y+z)$

$=(x-y)^2+(x-y+z)^2-2(x-y)(x-y+z)$

$=[(x-y)-(x-y+z)]^2$

$=z^2$

b.

$(a^3-b^3)(a^3+b^3)-(a^2-b^2)(a^4+a^2b^2+b^4)$

$=a^6-b^6-[(a^2)^3-(b^2)^3]$
$=a^6-b^6-a^6+b^6=0$

Tham khảo:

6: 

a3(c-b2)+b3(a-c2)+c3(b-a2)+abc(abc-1)

= a3c-a3b2+b3a-b3c2+c3b-c3a2+a2b2c2-abc

= a2b2c2 - b3c2 - ( a2c3 - bc3 ) - ( a3b2 - ab3 ) + ( a3c - abc )

= b2c2 . ( a2 - b ) - c3 ( a2 - b ) - ab2 ( a2 - b ) + ac ( a2 - b ) 

= ( a2 - b ) ( b2c2 - c3 - ab2 + ac )

= ( a2 - b ) ( b2 - c ) ( c2 - a )

 

Bạn tách ra đi bạn

2 tháng 8 2017

6,

=a4 [-(a-b)-(c-a)] + [b4(c-a)+c4(a-b)]

=rồi nhóm hạng tử chung lại

=và sau đó tách ra bằng hằng đẳng thức 

kết quả =(a-b)(c-a)(c-b)(a2+b2+c2+ab+bc+ca)

              Bài này khá dài nên mk nhác viết , bn cố gắng làm bài nhé ! 

5 tháng 4 2020

a, Nhận xét: (x+y+x)^2=(x^ +y^2 +z^2) +2(xy+yz+zx)

      Đặt x^ +y^2 +z^2=a

            xy+yz+zx=b

Khi đó ta có a(a+2b)+b^2= (a+b)^2

Phân tích đa thức thành nhân tử:

a.   A= (x2 + y2 + z2)(x + y + z)2 + (xy + yz + zx)2 

b.   B= 2(x4 + y+ z4) - (x2 + y2 + z2)2 -2(x2 + y2 + z2)(x + y + z)2 + (x + y + z)4

c.   C= (a + b + c)3 - 4(a3 + b3 + c3) -12abc

Giải

  Đặt  x^2 + y^2 + z^2 =a,

  xy + yz +  zx = b

  Ta có : ( x^2 + y^2 + z^2 )

  ( y + x + z )^2 + (xy + yz + zx )^2

 = a (x^2 + y^2 + z^2 + 2xy + 2yz + 2xz ) + b^2

 = a (a +2b) +b^2

 = a^2 + ab + b^2

 =( a + b ) ^ 2

 = (x^2 +y^2 + z^2 + xy + yz + zx )^2

             chúc bạn học tốt ( có người dạy mình )