Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{20-2\cdot3\cdot\sqrt{20}+9}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{20}+3}}\)
\(=\sqrt{5-\sqrt{6-\sqrt{20}}}\)
\(=\sqrt{5-\sqrt{5-2\sqrt{5}+1}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}+1\right)^2}}\)
\(=\sqrt{5-\sqrt{5}-1}\)
\(=\sqrt{4-\sqrt{5}}\)
c)\(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\)
\(=3-2=1\)
d)\(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(=\sqrt{5-\sqrt{12+2\cdot\sqrt{12}+1}}+\sqrt{3+\sqrt{12+2\cdot\sqrt{12}+1}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}+\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}\)
\(=\sqrt{5-\sqrt{12}-1}+\sqrt{3+\sqrt{12}+1}\)
\(=\sqrt{4-\sqrt{12}}+\sqrt{4+\sqrt{12}}\)
\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{4+2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}-1+\sqrt{3+1}\)
\(=2\sqrt{3}\)
\(\sqrt{24+8\sqrt{5}}+\) \(\sqrt{9-4\sqrt{5}}=\) \(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}.2+4}\) + \(\sqrt{5-2\sqrt{5}.2+4}\)
= \(\sqrt{\left(2\sqrt{5}+2\right)^2}+\) \(\sqrt{\left(\sqrt{5}-2\right)^2}\) = \(2\sqrt{5}+2+\sqrt{5}-2=3\sqrt{5}\)
==================================================
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) = \(\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)= \(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)
===========================================================
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)
= \(\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\) \(=\sqrt{\left(3\sqrt{2}+5\right)^2}=3\sqrt{2}+5\)
================================================================
\(A=\sqrt{2+2\sqrt{\frac{3}{4}}}+\sqrt{2-2\sqrt{\frac{3}{4}}}\)
\(A=\sqrt{\left(\sqrt{\frac{3}{2}}\right)^2+2\sqrt{\frac{3}{2}.\frac{1}{2}}+\left(\sqrt{\frac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\frac{3}{2}}\right)^2-2\sqrt{\frac{3}{2}.\frac{1}{2}}+\left(\sqrt{\frac{1}{2}}\right)^2}\)
\(A=\sqrt{\left(\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{1}{2}}\right)^2}\)
\(A=\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}-\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}\)
\(A=2\sqrt{\frac{3}{2}}=\sqrt{4.\frac{3}{2}}=\sqrt{6}\)
\(A=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=|2+\sqrt{3}|+|2-\sqrt{3}|\)\(=2+\sqrt{3}+2-\sqrt{3}=4\)
a,\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(=\sqrt{13+30\sqrt{3+2\sqrt{2}}}\\ =\sqrt{13+30\left(\sqrt{2}+1\right)}\)
\(=\sqrt{43+30\sqrt{2}}=5+3\sqrt{2}\)
b, \(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(\Leftrightarrow\sqrt{5-\sqrt{\left(2\sqrt{3}\right)^2+2.2\sqrt{3}+1}}+\sqrt{3+\sqrt{\left(2\sqrt{3}\right)^2+2.2\sqrt{3}+1}}\)
\(\Leftrightarrow\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}+\sqrt{3+\sqrt{\left(2\sqrt{3}+1\right)^2}}\)
\(\Leftrightarrow\sqrt{5-2\sqrt{3}-1}+\sqrt{3+2\sqrt{3}+1}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(\Leftrightarrow\sqrt{3}-1+\sqrt{3}+1\)
\(\Leftrightarrow2\sqrt{3}\)
Lời giải:
a)
\((\sqrt{5-2\sqrt{5}}+\sqrt{5+2\sqrt{5}})^2=5-2\sqrt{5}+5+2\sqrt{5}+2\sqrt{(5-2\sqrt{5})(5+2\sqrt{5})}\)
\(=10+2\sqrt{5^2-(2\sqrt{5})^2}=10+2\sqrt{5}\)
\(\Rightarrow \sqrt{5-2\sqrt{5}}+\sqrt{5+2\sqrt{5}}=\sqrt{10+2\sqrt{5}}\)
b)
\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{2^2+3-2.2\sqrt{3}}+\sqrt{2^2+3+2.2\sqrt{3}}\)
\(=\sqrt{(2-\sqrt{3})^2}+\sqrt{(2+\sqrt{3})^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
c)
\(\sqrt{13-4\sqrt{3}}+\sqrt{13+4\sqrt{3}}=\sqrt{13-2\sqrt{12}}+\sqrt{13+2\sqrt{12}}\)
\(=\sqrt{12+1-2\sqrt{12}}+\sqrt{12+1+2\sqrt{12}}=\sqrt{(\sqrt{12}-1)^2}+\sqrt{(\sqrt{12}+1)^2}\)
\(=\sqrt{12}-1+\sqrt{12}+1=2\sqrt{12}=4\sqrt{3}\)
Lời giải:
a)
\((\sqrt{5-2\sqrt{5}}+\sqrt{5+2\sqrt{5}})^2=5-2\sqrt{5}+5+2\sqrt{5}+2\sqrt{(5-2\sqrt{5})(5+2\sqrt{5})}\)
\(=10+2\sqrt{5^2-(2\sqrt{5})^2}=10+2\sqrt{5}\)
\(\Rightarrow \sqrt{5-2\sqrt{5}}+\sqrt{5+2\sqrt{5}}=\sqrt{10+2\sqrt{5}}\)
b)
\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{2^2+3-2.2\sqrt{3}}+\sqrt{2^2+3+2.2\sqrt{3}}\)
\(=\sqrt{(2-\sqrt{3})^2}+\sqrt{(2+\sqrt{3})^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
c)
\(\sqrt{13-4\sqrt{3}}+\sqrt{13+4\sqrt{3}}=\sqrt{13-2\sqrt{12}}+\sqrt{13+2\sqrt{12}}\)
\(=\sqrt{12+1-2\sqrt{12}}+\sqrt{12+1+2\sqrt{12}}=\sqrt{(\sqrt{12}-1)^2}+\sqrt{(\sqrt{12}+1)^2}\)
\(=\sqrt{12}-1+\sqrt{12}+1=2\sqrt{12}=4\sqrt{3}\)
đặt\(a=\sqrt[3]{5+2\sqrt{13}}\\ b=\sqrt[3]{5-\sqrt{13}}\)
ta có \(A^3=a^3+3ab\left(a+b\right)+b^3=5+2\sqrt{13}+5-2\sqrt{13}\\ \)
<=>\(A^3=10+3\sqrt[3]{\left(5+2\sqrt{13}\right)\left(5-2\sqrt{13}\right)}\cdot A\)
<=>\(A^3=10-9A\)
<=>\(A^3+9A-10=0\)\(\)
<=>\(A^3+10A-A-10=0\)
<=>\(A\left(A^2-1\right)+10\left(A-1\right)=0\)
<=>\(\left(A-1\right)\left(A^2+A+10\right)=0\)
Vì \(A^2+A+10>0\left(\forall A\right)\)
\(=>A-1=0\\ A=1\)