Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}\)
\(A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)
\(A=\frac{1}{2}-\frac{1}{17}\)
\(A=\frac{15}{34}\)
= \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)= \(\frac{1}{2}-\frac{1}{17}\)=\(\frac{15}{34}\)
\(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{21.24}\)
\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{21}-\frac{1}{24}\)
\(=\frac{1}{5}-\frac{1}{24}\)
\(=\frac{19}{120}\)
\(B=\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2018.2021}\)
\(B=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2018}-\frac{1}{2021}\)
\(B=\frac{1}{5}-\frac{1}{2021}\)
\(B=\frac{2016}{10105}\)
a) = 1-1/2+1/2-1/3+1/3-1/4
= 1-1/4=3/4
b)=1-1/2+1/2-1/3+1/3-1/4+...+1/2016-1/2017+1/2017-1/2018
=1-1/2018=2017/2018
c)=1/2-1/5+1/5-1/8+1/8-1/11+1/2009-1/2012+1/2012-1/2015
= 1/2-1/2015=2015/4030-2/4030=2013/4030
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}=1-\frac{1}{4}=\frac{3}{4}\)
b) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017-2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
c) \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2012.2015}\)
\(=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{2012.2015}\right)\)
\(\Leftrightarrow\frac{3}{2}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2012}-\frac{1}{2015}\right)\)
\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{2015}\right)\)
\(=\frac{3}{2}.\frac{2013}{4030}\)
\(=\frac{6039}{8060}\)
\(\frac{3^2}{2.5}+\frac{3^2}{5.8}+\frac{3^2}{8.11}+\frac{3^2}{11.14}+\frac{3^2}{14.17}\)
=\(3\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}\right)\)
= \(3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\right)\)
= \(3\left(\frac{1}{2}-\frac{1}{17}\right)\)
=\(\frac{45}{34}\)
\(3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\right)\)
=3(3/2.5+3/5.8+3/8.11+3/11.14+3/14.17)
=3(1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14+1/14-1/17)
=3(1/2-1/17)
=45/34
cô Nhung ơi k đúng cho con đi cô pls
\(H=\frac{3^2}{2.5}+\frac{3^2}{5.8}+\frac{3^2}{8.11}+\frac{3^2}{11.14}+...+\frac{3^2}{197.200}=3.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{197.200}\right)=3.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{197}-\frac{1}{200}\right)=3\cdot\left(\frac{1}{2}-\frac{1}{200}\right)==\frac{297}{200}\)
\(\frac{3}{2.5}\)+\(\frac{3}{5.8}\)+\(\frac{3}{8.11}\)+\(\frac{3}{11.14}\)+\(\frac{3}{14.17}\)
=\(\frac{1}{2}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{8}\)+......+\(\frac{1}{14}\)-\(\frac{1}{17}\)
=\(\frac{1}{2}\)-\(\frac{1}{17}\)
=\(\frac{15}{34}\)
\(a,A=\frac{3}{2}+\frac{3}{6}+\frac{3}{12}+\frac{3}{20}+...+\frac{3}{90}\)
\(A=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)
\(A=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=3.\left(1-\frac{1}{10}\right)\)
\(A=3.\frac{9}{10}=\frac{27}{10}\)
\(b,B=\frac{2}{2.5}+\frac{2}{5.8}+\frac{2}{8.11}+\frac{2}{11.14}+\frac{2}{14.17}\)
\(B.\frac{3}{2}=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}\)
\(B.\frac{3}{2}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)
\(B.\frac{3}{2}=\frac{1}{2}-\frac{1}{17}\)
\(B=\frac{15}{34}:\frac{3}{2}=\frac{5}{17}\)
a/ Ta có: \(S=1+\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{27}-\frac{1}{30}\right)\)
\(S=1+\left(\frac{1}{2}-\frac{1}{30}\right)\)
\(S=1+\frac{7}{15}\)
\(S=\frac{22}{15}\)
b/ \(S=-4+\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{107}-\frac{1}{110}\right)\)
\(S=-4+\left(1-\frac{1}{110}\right)\)
\(S=-4+\frac{109}{110}\)
\(S=-3\frac{1}{110}\)
Ta có :
\(A=\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{2009.2012}+\frac{3}{2012.2015}\)
\(A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{2009}-\frac{1}{2012}+\frac{1}{2012}-\frac{1}{2015}\)
\(A=\frac{1}{5}-\frac{1}{2015}\)
\(A=\frac{402}{2015}\)
Vậy \(A=\frac{402}{2015}\)
Chúc bạn học tốt ~
A = 402/2015