\(A=\frac{2}{60\cdot63}+\frac{2}{63\cdot66}+...+\frac{2}{117\cdot120}+\frac{2}{2003}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

Ta có: \(A=\frac{2}{60.63}+\frac{2}{63.66}+...+\frac{2}{117.120}+\frac{2}{2003}\)

\(\Rightarrow A=\frac{2}{3}\left(\frac{3}{60.63}+\frac{3}{63.66}+...+\frac{3}{117.120}\right)+\frac{2}{2003}\)

\(\Rightarrow A=\frac{2}{3}\left(\frac{1}{60}-\frac{1}{63}+\frac{1}{63}-\frac{1}{66}+...+\frac{1}{117}-\frac{1}{120}\right)+\frac{2}{2003}\)

\(\Rightarrow A=\frac{2}{3}\left(\frac{1}{60}-\frac{1}{120}\right)+\frac{2}{2003}\)

\(\Rightarrow A=\frac{2}{3}.\frac{1}{120}+\frac{2}{2003}\)

\(\Rightarrow A=\frac{1}{180}+\frac{2}{2003}\)

\(B=\frac{5}{40.44}+\frac{5}{44.48}+...+\frac{5}{76.80}+\frac{5}{2003}\)

\(\Rightarrow B=\frac{5}{4}\left(\frac{4}{40.44}+\frac{4}{44.48}+...+\frac{4}{76.80}\right)+\frac{5}{2003}\)

\(\Rightarrow B=\frac{5}{4}\left(\frac{1}{40}-\frac{1}{44}+\frac{1}{44}-\frac{1}{48}+...+\frac{1}{76}-\frac{1}{80}\right)+\frac{5}{2003}\)

\(\Rightarrow B=\frac{5}{4}\left(\frac{1}{40}-\frac{1}{80}\right)+\frac{5}{2003}\)

\(\Rightarrow B=\frac{5}{4}.\frac{1}{80}+\frac{5}{2003}\)

\(\Rightarrow B=\frac{1}{64}+\frac{5}{2003}\)

\(\left\{\begin{matrix}\frac{1}{64}>\frac{1}{180}\\\frac{5}{2003}>\frac{2}{2003}\end{matrix}\right.\Rightarrow\frac{1}{64}+\frac{5}{2003}>\frac{1}{180}+\frac{2}{2003}\Rightarrow B>A\)

Vậy A < B

12 tháng 10 2019

\(1-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-.......-\frac{2}{61.63}-\frac{2}{63.65}\)

=\(-1.\left(\frac{2}{3.5}+\frac{2}{5.7}+......\frac{2}{63.65}\right)+1\)

=\(-1.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{63}-\frac{1}{65}\right)+1\)

=\(-1.\left(\frac{1}{3}-\frac{1}{65}\right)+1\)

=\(-1.\frac{62}{195}+1\)

=\(\frac{-62}{195}+\frac{195}{195}\)

=\(\frac{133}{195}\)

Hok tốt nhé bn

23 tháng 12 2016

Bài 1:

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

\(\Rightarrow P=\frac{1\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2002}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

\(\Rightarrow P=\frac{1}{5}-\frac{2}{3}\)

\(\Rightarrow P=\frac{-7}{15}\)

Vậy \(P=\frac{-7}{15}\)

Bài 2:
Ta có: \(S=23+43+63+...+203\)

\(\Rightarrow S=13+10+20+23+...+103+100\)

\(\Rightarrow S=\left(13+23+...+103\right)+\left(10+20+...+100\right)\)

\(\Rightarrow S=3025+450\)

\(\Rightarrow S=3475\)

Vậy S = 3475

23 tháng 12 2016

1. \(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

=> P =\(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

=> P = \(\frac{1}{5}-\frac{2}{3}\)

P = \(\frac{3}{15}-\frac{10}{15}\)

=> P =\(\frac{-7}{15}\)

2. ta có:

S = 23 + 43 + 63 +...+ 203

=> S = 13 + 10 + 23 + 20 +...+ 103 + 100

=> S = ( 13 + 23+...+ 103 ) + ( 10 + 20 +...+ 100 )

=> S = 3025 + 550

=> S = 3575

Vậy S = 3575

25 tháng 9 2018

a) \(\left(2-\frac{3}{2}\right)\left(2-\frac{4}{3}\right)\left(2-\frac{5}{4}\right)\left(2-\frac{6}{4}\right)\)

\(=\frac{1}{3}\left(-\frac{4}{3}+2\right)\left(-\frac{5}{4}+2\right)\left(-\frac{6}{4}+2\right)\)

\(=\frac{1}{2}.\frac{2}{3}\left(-\frac{5}{4}+2\right)\left(-\frac{6}{4}+2\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}\left(-\frac{6}{4}+2\right)\)

\(=\frac{1.2.3\left(2-\frac{3}{2}\right)}{2.3.4}\)

\(=\frac{1.3\left(2-\frac{3}{2}\right)}{3.4}\)

\(=\frac{1.\left(2-\frac{3}{2}\right)}{4}\)

\(=\frac{2-\frac{3}{4}}{4}\)

\(=\frac{1}{2.4}\)

\(=\frac{1}{8}\)

b) \(\left(\frac{2003}{2004}+\frac{2004}{2003}\right):\frac{8028025}{8028024}\)

\(=\frac{8028024\left(\frac{2003}{2004}+\frac{2004}{2003}\right)}{8028025}\)

\(=\frac{8028024.\frac{8028025}{4014012}}{8028025}\)

\(=\frac{16056050}{8028025}\)

= 2

19 tháng 3 2020

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

\(P=\frac{1}{5}-\frac{2}{3}=\frac{3-10}{15}=\frac{-7}{15}\)

1 tháng 8 2016

 x-1/65-1-x-3/63-1+x-5/61-1+x-7/59-1                                                                                                                                                    x-66/65-x-66/63+x-66/61+x-66/59 =0                                                                                                                                                   suy ra (x-66).(1/65-1/63+1/61+1/59)=0                                                                                                                                                  vi 1/65-1/63+1/61+1/59khong thuoc 0                                                                                                                                                            nen x-66+66=0                                                                                                                                                                                              suy ra x =132

18 tháng 8 2016

a-b=2.(a+b) tương đương a-b =2a + 2b tương đương -3b=a

a-b=a.b suy ra -3b-b=-3b.b tương đương -4b=-3b.b tương đương b=4/3 suy ra a=-4

với a=-4 ; b=4/3 thì a-b = 2.(a+b)= a.b