K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2024

A B C H M O N

a/

\(\widehat{ACM}=90^o\) (Góc nt chắn nửa đường tròn)

b/

\(\widehat{ABM}=90^o\) (Góc nt chắn nửa đường tròn)

\(\widehat{ABC}+\widehat{MBC}=\widehat{ABM}=90^o\)

Xét tg vuông ABH

\(\widehat{BAH}+\widehat{ABC}=90^o\)

\(\Rightarrow\widehat{BAH}=\widehat{MBC}\)

\(\widehat{MBC}=\widehat{MAC}\) (Góc nt cùng chắn cung MC)

\(\Rightarrow\widehat{BAH}=\widehat{MBC}=\widehat{MAC}\)

Xét tg OAC có

OA = OC = R => tg OAC cân tại O \(\Rightarrow\widehat{MAC}=\widehat{OCA}\) (Góc ở đáy tg cân)

\(\Rightarrow\widehat{BAH}=\widehat{OCA}\)

c/

\(\widehat{ANM}=90^o\)  (Góc nt chắn nửa đường tròn) \(\Rightarrow MN\perp AH\)

Mà \(BC\perp AH\left(gt\right)\)

=> MN//BC (Cùng vg với AH)

=> BCMN là hình thang

\(sđ\widehat{BAH}=\dfrac{1}{2}sđcungBN\) (Góc nt đường tròn)

\(sđ\widehat{MAC}=\dfrac{1}{2}sđcungCM\) (Góc nt đường tròn)

Mà \(\widehat{BAH}=\widehat{MAC}\left(cmt\right)\)

\(\Rightarrow sđcungBN=sđcungCM\Rightarrow BN=CM\) (trong đường tròn 2 cung có số đo = nhau thì 2 dây trương cung bằng nhau)

=> BCMN là hình thang cân

\(\widehat{ANM}=90^o\) 

7 tháng 5 2019

a, Ta có  A C M ^ = 90 0  (góc nội tiếp)

b, Ta có ∆ABH:∆AMC(g.g)

=>  B A H ^ = O A C ^ ; O C A ^ = O A C ^

=>  B A H ^ = O C A ^

c,  A N M ^ = 90 0

=> MNBC là hình thang

=> BC//MN => sđ B N ⏜ = sđ C M ⏜

=>  C B N ^ = B C M ^  nên BCMN là hình thang cân

a: Xét (O) có

ΔACM nội tiếp

AM là đường kính

Do đó: ΔACM vuông tại C

hay \(\widehat{ACM}=90^0\)

b: \(\widehat{OAC}+\widehat{AMC}=90^0\)

\(\widehat{BAH}+\widehat{ABC}=90^0\)

mà \(\widehat{AMC}=\widehat{ABC}\)

nên \(\widehat{OAC}=\widehat{BAH}=\widehat{OCA}\)

26 tháng 1 2022

Xét \(\Delta OAC\) có : \(OA=OC\left(=R\right)\left(gt\right)\)

\(\Rightarrow\Delta OAC\) cân tại O

\(\Rightarrow\widehat{OAC}=\widehat{ACO\left(2\right)}\)

Từ (1) và (2) \(\Rightarrow\widehat{BAH=\widehat{OCA}}\)

c) Xét \(\left(O\right)\), có : \(\widehat{ANM=90^0}\)

\(\Rightarrow MN\pm AN\)

\(MàBC\pm AN\left(gt\right)\) 

\(\Rightarrow MN=BC\)

Xét tam giác \(BNMC\)\(cóMN=BC\left(cmt\right)\)

Tam giác BNMC là hình thang

Mà bốn đỉnh B,M,N,C

Vậy BMNC là tam giác cân

a: Xét (O) có

ΔACM nội tiếp

AM là đường kính

Do đó: ΔACM vuông tại C

b: \(\widehat{BAH}+\widehat{ABC}=90^0\)

\(\widehat{OAC}+\widehat{AMC}=90^0\)

mà \(\widehat{ABC}=\widehat{AMC}\left(=\dfrac{sđ\stackrel\frown{AC}}{2}\right)\)

nên \(\widehat{BAH}=\widehat{OAC}=\widehat{OCA}\)

26 tháng 1 2022

Bạn chưa tính góc AMC kìa  :))))

 

13 tháng 12 2021

\(a,\widehat{ACM}=90^o\) (góc nội tiếp chắn nửa đường tròn)

\(b,\widehat{ABC}=\widehat{AMC}=\dfrac{1}{2}sđ\mathop{AC}\limits^{\displaystyle\frown}\)

Mà \(\widehat{ABH}+\widehat{ABC}=\widehat{OAC}+\widehat{AMC}=90^0\)

Do đó \(\widehat{ABH}=\widehat{OAC}\)

\(c,\widehat{ANM}=90^0\) (góc nội tiếp chắn nửa đường tròn)

Do đó \(MN\bot AN\)

Mà \(BC\bot AN \Rightarrow BC//MN\)

Do đó BCMN là hình thang

Mà \(B,M,N,C\in (O)\)

Vậy BCMN là hình thang cân

a: góc ACM=1/2*sđ cung AM=90 độ

b: góc ADB=góc AEB=90 độ

=>ABDE nội tiếp