K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

Ta có :

A = 1/n + 2/(n-1) +....+n/1

A= 1/n + 2/(n-1) +....+(1+1+1+....+1)

                                      (n c/s 1)

A = (1/n +1) +  [1 + 2/(n-1)] +...+ [ 1+ (n-1)/2] + 1

A = (n+1)/n + (n+1)/2+...+(n+1)/2 + (n+1)/(n+1)

A= (n+1)[1/2 + 1/3 +....+1/(n+1)]

Mà  B = 1/2 +1/3+....+1/(n+1)

=> A/B = n+1

Vậy A/B = n+1

13 tháng 2 2018

A = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)

3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)

3A-A= \(1-\frac{1}{3^{2008}}\)

13 tháng 2 2018

B = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}+\frac{1}{3^n}\)

3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-2}}+\frac{1}{3^{n-1}}\)

3B - B = \(1-\frac{1}{3^n}\)

5 tháng 8 2018

a) 3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 


=>S=[n.(n+1).(n+2)] : 3

29 tháng 8 2022

bb

7 tháng 1

Bạn tách từng bài ra cho mọi người dễ làm nhé.

8 tháng 1

@ Hữu Nghĩa

bn í tách r mà!

18 tháng 3 2021

i

help me

22 tháng 11 2015

a) Đặt A = 1.2 + 2.3 + ........ + (n-1)n

3A = 1.2.3 + 2.3.(4-1) + .... + (n-1)n[(n+1)-(n-2)]

3A = 1.2.3 + 2.3.4 - 1.2.3 + .... + (n-1)n(n+1) - (n-2)(n-1)n

3A = (1.2.3 - 1.2..3) + ... + (n-1)n(n+1)

A = \(\frac{\left(n-1\right)n\left(n+1\right)}{3}\)

b) Đặt B = 12 + 22 + ..... + n2

B = 1(2 - 1) + 2(3 - 1) + ..... + n[(n + 1) - 1]

B = 1.2 + 2.3 + .......... + n(n + 1) - (1+2+3+....+n)

B = A -  \(\frac{n\left(n+1\right)}{2}\)