Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC có MN//BC nên \(\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}\)(định lý Thales)
\(\frac{AM}{AB}=\frac{AN}{AC}\Rightarrow\frac{5}{15}=\frac{AN}{12}\Rightarrow AN=\frac{5.12}{15}=4\)
\(\frac{AM}{AB}=\frac{MN}{BC}\Rightarrow\frac{5}{15}=\frac{MN}{20}\Rightarrow MN=\frac{5.20}{15}=\frac{20}{3}\)
Dễ thấy MNPB là hình bình hành nên \(MN=BP=\frac{20}{3}\)
Vậy \(AN=4\);\(MN=BP=\frac{20}{3}\)
Bài làm
a) Vì AM/MB = 1/2
=> AM/1 = AB/2
Áp dụng tính chất dãy tỉ số bằng nhau có:
AM/1 + MB/2 = AM+MB/1+2 = AB/ 3 = 12/3 = 4
Do đó: AM/1 = 4 => AM = 4
MB/2 = 4 => MB = 8
Vậy AM = 4cm, MB = 8 cm
b) đề bị lỗi. Phải là MN //BC thì N mới thuộc AC nha.
Xét tam giác ABC có:
MN // BC
Theo hệ quả Thales có:
AM/AB = AN/AC
Hay AN/AC = AM/AM + BM
=> AN/AC = 1/3
Vậy tỉ số của AN/AC là 1/3
\(-ab\left(-bc\right)\left(-ac\right)=-\left(abc\right)^2\)