Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)9b^2 + 5ab +25a^2/36
b)25x^2 -10xy +y^2
c)(2a+b)^2 - 25
d)x^4 - 4/25y^2
a) \(=6a-3+15-5a=a+12\)
b) \(=25x-12x+4+35-14x=-x+39\)
d) \(=2ab+8a^2-b^2-4ab+2ab-6a^2=2a^2-b^2\)
e) \(=x+x^2-x^3+x^4-x^5+1+x-x^2+x^3-x^4=-x^5+2x+1\)
f) \(=6y^3-3y^2+y-y+y^2-y^3-y^2+y=5y^3-3y^2+y\)
a) 3( 2a -1) +5( 3-a)
= 3. 2a -3.1 +5. 3- 5.a
= 6a -3+ 15-5a
=(6a -5a )+ (-3+ 15)
b) 25x - 4(3x - 1) +7(5 - 2x)
= 25x -4.3x + 4.1 + 7.5 - 7.2
=25x - 12x + 4 +35 - 14x
= (25x-12x-14x)+(4+35)
= -x=39
c) -12x3 -x1-2x-18x2
= -36x-x-2x-36x
= -75x
d) (2a-b)(b+4a)+2a(b-3a)
= 2ab+2a4a-bb-b4a+2ab-2a3b
= 2ab+8a2-b2-4ab+2ab-6a2
=(2ab-4ab+2ab)+(8a2-6a2)-b2
= 2a2-b2
e) (x+1)(2+x-x2+x3-x4)
= (x+1)(2-2x)
= x2-x2x+1.2-1.2x
=(2x-2x)-2x2+2
= -2x2+2
Bài 3:
a) \(4x^2+4x+1=\left(2x+1\right)^2\)
b) \(9x^2-12x+4=\left(3x-2\right)^2\)
c) \(ab^2+\dfrac{1}{4}a^2b^4+1=\left(\dfrac{1}{2}ab^2+1\right)^2\)
a) \(\left(2x^3-x^2+5x\right):x\)
\(=\dfrac{2x^3-x^2+5x}{x}\)
\(=\dfrac{x\left(2x^2-x+5\right)}{x}\)
\(=2x^2-x+5\)
b) \(\left(3x^4-2x^3+x^2\right):\left(-2x\right)\)
\(=\dfrac{3x^4-2x^3+x^2}{-2x}\)
\(=\dfrac{2x\left(\dfrac{3}{2}x^3-x^2+\dfrac{1}{2}x\right)}{-2x}\)
\(=-\left(\dfrac{3}{2}x^3-x^2+\dfrac{1}{2}x\right)\)
\(=-\dfrac{3}{2}x^3+x^2-\dfrac{1}{2}x\)
c) \(\left(-2x^5+3x^2-4x^3\right):2x^2\)
\(=\dfrac{-2x^5+3x^2-4x^3}{2x^2}\)
\(=\dfrac{2x^2\left(-x^3+\dfrac{3}{2}-2x\right)}{2x^2}\)
\(=-x^3-2x+\dfrac{3}{2}\)
d) \(\left(x^3-2x^2y+3xy^2\right):\left(-\dfrac{1}{2}x\right)\)
\(=\dfrac{x^3-2x^2y+3xy^2}{-\dfrac{1}{2}x}\)
\(=\dfrac{\dfrac{1}{2}x\left(2x^2-4xy+6y^2\right)}{-\dfrac{1}{2}x}\)
\(=-\left(2x^2-4xy+6y^2\right)\)
\(=-2x^2+4xy-6y^2\)
e) \(\left[3\left(x-y\right)^5-2\left(x-y\right)^4+3\left(x-y\right)^2\right]:5\left(x-y\right)^2\)
\(=\dfrac{3\left(x-y\right)^5-2\left(x-y\right)^4+3\left(x-y\right)^2}{5\left(x-y\right)^2}\)
\(=\dfrac{5\left(x-y\right)^2\left[\dfrac{3}{5}\left(x-y\right)^3-\dfrac{2}{5}\left(x-y\right)^2+\dfrac{3}{5}\right]}{5\left(x-y\right)^2}\)
\(=\dfrac{3}{5}\left(x-y\right)^3-\dfrac{2}{5}\left(x-y\right)^2+\dfrac{3}{5}\)
f) \(\left(3x^5y^2+4x^3y^3-5x^2y^4\right):2x^2y^2\)
\(=\dfrac{3x^5y^2+4x^3y^3-5x^2y^4}{2x^2y^2}\)
\(=\dfrac{2x^2y^2\left(\dfrac{3}{2}x^3+2xy-\dfrac{5}{2}y^2\right)}{2x^2y^2}\)
\(=\dfrac{3}{2}x^3+2xy-\dfrac{5}{2}y^2\)
1/ \(-9a^2+a+5=-\left(\left(3a\right)^2+2\cdot a\cdot\frac{1}{2}+\frac{1}{4}+\frac{19}{4}\right)=-\left(3a+\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)
Vậy GTLN của biểu thức bằng -19/4
Dấu "=" xảy ra \(\Leftrightarrow\left(3a+2\right)^2=0\Leftrightarrow3a+2=0\Leftrightarrow a=-\frac{2}{3}\)
2/ \(2a^2+2ab+b^2+2a+5=a^2+2ab+b^2+a^2+2a+5=\left(a+b\right)^2+\left(a^2+2a+1\right)+4=\left(a+b\right)^2+\left(a+1\right)^2+4=0\ge4\)
Vậy GTNN của biểu thứ bằng 4
Dấu "=" xảy ra \(\Leftrightarrow\left(a+b\right)^2+\left(a+1\right)^2=0\Leftrightarrow a+b+a+1=0\Leftrightarrow2a+b+1=0\Leftrightarrow2a=-1-b\Leftrightarrow a=-\frac{1+b}{2}\)
xin lỗi nha mình chưa học lớp 8
uk,ko sao