Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2=\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=a^2+b^2+c^2\)
\(\Leftrightarrow2\left(ab+ac+bc\right)=0\)
\(\Leftrightarrow ab+ac+bc=0\)
\(\Leftrightarrow\hept{\begin{cases}ab=-ac-bc\\ac=-ab-bc\\bc=-ab-ac\end{cases}}\)
Ta có : \(a^2+2bc=a^2+bc+bc=a^2+bc-ab-ac=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)
CMTT ta có : \(\hept{\begin{cases}b^2+2ac=\left(b-a\right)\left(b-c\right)\\c^2+2ab=\left(c-a\right)\left(c-b\right)\end{cases}}\)
Thay vào A ta được :
\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
\(A=\frac{b-c}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{-a+c}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{a-b}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(A=\frac{b-c-a+c+a-b}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(A=\frac{0}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(A=0\)
các bn giải nhanh giúo mk vs mk sắp ps đi hok rôi!!!Tks trc nha<33
\(a^2-b^2-c^2-2bc-14a=-\left(-a^2+b^2+c^2+2bc+14a\right)\)
\(=-\left(-a^2+\left(b+c\right)^2+14a\right)=a^2-\left(b+c\right)^2-14a\)
ta có a+b+c=7=>b+c=7-a
thay b+c=7-a vào biểu thức ta có:
\(a^2-\left(7-a\right)^2-14a=a^2-14+14a-a^2-14a=-14\)