\(A=1+4+7+...+\left(3n+1\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2015

Số số hạng : (3n + 1 - 1) : 3 + 1 = n + 1 số

Tổng A = (1 + 3n + 1) x (n+1) : 2 = (3n + 2).(n+1) / 2

14 tháng 10 2015

Số số hạng là :

( 3n + 1 - 1 ) : 3 + 1 = n + 1 ( số )

Tổng A là :

( n + 1 + 1 ) . ( n+1 ) : 2 = ( n+2)  . (n+1) : 2 

a) Vì 3\(⋮\)n

=> n\(\in\)Ư(3)={ 1; 3 }

Vậy, n=1 hoặc n=3

17 tháng 10 2018

A:    n=3;1                  E:     n=2

B:     n=6;2                  F:    n=2

c:     n=1                     G:     n=2

D:    n=2                      H:     n=5

27 tháng 1 2017

a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\)

\(=\frac{1}{2}-\frac{1}{3n+2}=\frac{3n+2}{2\cdot\left(3n+2\right)}-\frac{2}{2\cdot\left(3n+2\right)}\)

\(=\frac{3n+2-2}{6n+4}=\frac{3n}{6n+4}=VP\)

27 tháng 1 2017

chết phần a quên nhân vs 1/3

30 tháng 1 2017

a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)

\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right]\)

\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]=\frac{1}{3}\left[\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right]\)

\(=\frac{1}{3}\cdot\frac{3n}{6n+4}=\frac{n}{6n+4}=VP\)

30 tháng 1 2017

b) Ta có: \(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)

\(=\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{4n+3}{12n+9}-\frac{3}{12n+9}\right)\)

\(=\frac{5}{4}.\frac{4n}{12n+9}\)

\(=\frac{5n}{12n+9}\)

( sai đề )

27 tháng 7 2017

b)

Để \(2n⋮\left(n-1\right)\)

\(\Rightarrow2.\left(n-1\right)+2⋮\left(n-1\right)\)

\(\Rightarrow2⋮\left(n-1\right)\)

\(\Rightarrow\left(n-1\right)\inƯ\left(2\right)=\left\{1;2\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n-1=1\Rightarrow n=2\\n-1=2\Rightarrow n=3\end{matrix}\right.\)

Vậy n=2;n=3 thì \(2n⋮\left(n-1\right)\)

27 tháng 7 2017

c)

Để \(\left(3n-8\right)⋮\left(n-4\right)\)

\(\Rightarrow3.\left(n-4\right)+4⋮\left(n-4\right)\)

\(\Rightarrow4⋮\left(n-4\right)\)

\(\Rightarrow\left(n-4\right)\inƯ\left(4\right)=\left\{1;2;4\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n-4=1\Rightarrow n=5\\n-4=2\Rightarrow n=6\\n-4=4\Rightarrow n=8\end{matrix}\right.\)

Vậy với .....................

19 tháng 8 2018

a, 4n - 3n -1 chia hết 4n - 1

=> n(4n - 1 )  -2n -1 chia hết 4n - 1

=> 2n -1 chia hết 4n - 1

=> 4n - 1 + 2n chia hết 4n - 1

=> 2n chia hết 4n - 1

Mà 2n - 1 chia hết 4n - 1

=> 2n - (2n - 1) chia hết 4n - 1

=> 1 chia hết 4n - 1

=> 4n - 1 = 1

=> 4n = 2 

=> n = \(\frac{1}{2}\)

Mà n thuộc N

Vậy không có giá trị của n

b, 4n2 -3n -1 chia hết n - 1

=> 4n (n - 1) + n - 1 chia hết n - 1

=> n - 1 thuộc N

=> n thuộc N

Vậy n thuộc N

29 tháng 5 2019

a) \(\left(\frac{-3}{4}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)

\(\left(-\frac{3}{4}+\frac{2}{5}+\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)

\(0:\frac{3}{7}\)

\(0\)

29 tháng 5 2019

b) \(\frac{2}{8}:\left(\frac{2}{9}-\frac{1}{18}\right)+\frac{7}{8}:\left(\frac{1}{36}-\frac{5}{12}\right)\)

\(\frac{1}{4}:\frac{1}{6}+\frac{7}{8}:\frac{-7}{18}\)

=\(\frac{1}{4}.6+\frac{7}{8}.\frac{-18}{7}\)

\(\frac{3}{2}-\frac{3}{4}\)

\(\frac{3}{4}\)