K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 1 2022

\(A=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{2022-1}{2022!}\)

\(=\dfrac{2}{2!}+\dfrac{3}{3!}+\dfrac{4}{4!}+...+\dfrac{2022}{2022!}-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2022!}\right)\)

\(=1+\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{2021!}-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{2021!}+\dfrac{1}{2022!}\right)\)

\(=1-\dfrac{1}{2022!}\)

Giả sử tất cả các số đã cho đều lẻ

=>Quy đồng, ta được:

\(A=\dfrac{\left(a_2\cdot a_3\cdot...\cdot a_{2022}\right)+\left(a_1\cdot a_3\cdot...\cdot a_{2021}\cdot a_{2022}\right)+...+\left(a_1\cdot a_2\cdot...\cdot a_{2021}\right)}{a_1\cdot a_2\cdot...\cdot a_{2022}}=1\)

Tử có 2022 số hạng, mẫu là số lẻ

=>A là số chẵn khác 1

=>Trái GT

=>Phải có ít nhất 1 số là số chẵn

16 tháng 7 2023

a) Ta có:

2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122  020+122  021

2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122  019+122  020

Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122  019+122  020

                             −(12+122+123+...+122020+122021)−12+122+123+...+122  020+122  021

Do đó A=1−122021<1�=1−122021<1.

Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.

Vậy A < B.

 

31 tháng 10 2023

a) 2021 - (1/3)² . 3²

= 2021 - 1/9 . 9

= 2021 - 1

= 2020

b) 5/10 + 9 . (-3/2)

= 1/2 - 27/2

= -26/2

= -13

c) -10 . (-2021/2022)⁰ + (2/5)² : 2

= -10 . 1 + 4/25 . 2

= -10 + 8/25

= -68/7

31 tháng 10 2023

\(a,2021-\left(\dfrac{1}{3}\right)^2\cdot3^2\\ =2021-\dfrac{1}{9}\cdot9\\ =2021-\dfrac{9}{9}\\ =2021-1=2020\\ b,\dfrac{5}{10}+9\cdot\dfrac{-3}{2}\\ =\dfrac{5}{10}+\dfrac{-27}{2}\\ =\dfrac{5}{10}+\dfrac{-135}{10}\\ =-\dfrac{130}{10}\\ =-13\\ c,-10\cdot\left(-\dfrac{2021}{2022}\right)^0+\left(\dfrac{2}{5}\right)^2:2\\ =-10\cdot1+\dfrac{4}{25}\cdot\dfrac{1}{2}\\ =-10+\dfrac{4}{50}\\ =-10+\dfrac{2}{25}\\ =-\dfrac{248}{25}\)

12 tháng 12 2021

S = \(\left(1+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)

\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\right)-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)

\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1010}\right)\)

\(\dfrac{1}{1011}+\dfrac{1}{1012}+...+\dfrac{1}{2021}\)

30 tháng 4

S=P nhé

 

1 tháng 12 2023

A = \(\dfrac{\dfrac{2022}{1}+\dfrac{2021}{2}+\dfrac{2020}{3}+...+\dfrac{1}{2022}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}}\)

Xét TS = \(\dfrac{2022}{1}\) + \(\dfrac{2021}{2}\) \(\dfrac{2020}{3}\) +... + \(\dfrac{1}{2022}\)

      TS = (1 + \(\dfrac{2021}{2}\)) + (1 + \(\dfrac{2020}{3}\)) + ... + ( 1 + \(\dfrac{1}{2022}\)) + 1 

      TS = \(\dfrac{2023}{2}\) + \(\dfrac{2023}{3}\) +...+ \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2023}\)

      TS =  2023.(\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) +...+ \(\dfrac{1}{2023}\))

A = \(\dfrac{2023.\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}{\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}\)

 A = 2023

1 tháng 12 2023

Em cảm ơn ạ

A(1/2^2022)=1/2^2022+1/2^4044+...+1/2^(2022^2021)

=>2^2022*A=1+1/2^2022+...+1/2^(2022^2020)

=>A*(2^2022-1)=1-1/2^(2022^2021)

=>\(A=\dfrac{2^{2022^{2021}}-1}{2^{2022}-1}\)

15 tháng 5 2022

= 1.495676488x10-3