K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2021

a) (x-1)2

= x2 - 2x.1 + 12

=x2 - 2x +1

b) (3-y)2

=32 - 2.3y + y2

= 9 -6y +y2

c)`(x-1/2)^2`

`= x2  - 2x. 1/2 + (1/2)^2`

`= x2 - x + 1/4`

16 tháng 7 2019

=(x+y)^2-4(x+y)+1=3^2-4.3+1=9-12+1=-2

23 tháng 7 2019

a) Ta có : \(A=x^2+2xy+y^2-4x-4y+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

Đến đây tự làm nha , mik chỉ hưỡng dẫn hướng làm thôi chứ ko giải ra hết cho bạn chép đâu nha, đến đây tự thế vào là ra . Tự túc là hạnh phúc  :)

Hok tốt . Nhìn câu b mik nản quá nên thôi :)

31 tháng 8 2021

Tách ra mỗi câu một lần.

Dài quá không ai làm đâu.

Nhìn nản lắm.

Câu 3: 

a: \(49^2=2401\)

b: \(51^2=2601\)

c: \(99\cdot100=9900\)

12 tháng 8 2015

2) (2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2= (4a^2+4b^2+c^2+8ab-4ac-4bc)+(4b^2+4c^2+a^2+8bc-4ba-4ac)+(4c^2+4a^2+b^2+8ac-4cb-4ab)                                                                         =9a^2+9b^2+9c^2
ma a^2+b^2+c^2=m => 9a^2+9b^2+9c^2=9m

30 tháng 6 2018

bài 1 

\(A=\left(x+y\right)^2-4\left(x+y\right)+1\)

\(thay.x+y=3.tacoA=3^2-4.3+1=-2\)

Bài 2: 

a: \(A=\left(x+1\right)^3+5=20^3+5=8005\)

b: \(B=\left(x-1\right)^3+1=10^3+1=1001\)

1 tháng 7 2021

a) (x+9)(x-9)-x2=x2-81-x2=-81

b) (10x-1)(10x+1)-(10x-1)2=100x2-1-100x2+20x-1=20x-2

d) (x-1)(x-2)-(x-2)(x+2)=x2-3x+2-x2+4=-3x+6

21 tháng 11 2021

Chọn D

a: \(=\dfrac{-x^5y^5z^{10}}{x^4y^2z^6}=-xy^3z^4=1^3\cdot\left(-2\right)^4=16\)

b: \(=\dfrac{-3}{4}:\dfrac{-3}{2}\cdot\left(a^5:a^2\right)\cdot\left(b^3:b^2\right)\cdot\left(c^2:c\right)=\dfrac{1}{2}a^3bc=\dfrac{1}{2}\cdot\left(-2\right)^3\cdot3\cdot\dfrac{1}{2}=\dfrac{1}{4}\cdot\left(-8\right)\cdot3=-2\cdot3=-6\)

15 tháng 7 2021

B1

a, \(=>A=\left(x+y+x-y\right)\left(x+y-x+y\right)=2x.2y=4xy\)

b, \(=>B=\left[\left(x+y\right)-\left(x-y\right)\right]^2=\left[x+y-x+y\right]^2=\left[2y\right]^2=4y^2\)

c,\(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^2-1\right)\)

\(=\)\(\left(x+1\right)\left(x^2-x+1\right)\left(x-1\right)\left(x^2+x+1\right)=\left(x^3+1^3\right)\left(x^3-1^3\right)=x^6-1\)

d, \(\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)

\(=\left(a+b-c\right)^2-\left(b-c\right)^2+\left(a-b+c\right)^2-\left(b-c\right)^2\)

\(=\left(a+b-c+b-c\right)\left(a+b-c-b+c\right)\)

\(+\left(a-b+c+b-c\right)\left(a-b+c-b+c\right)\)

\(=a\left(a+2b-2c\right)+a\left(a-2b\right)\)

\(=a\left(a+2b-2c+a-2b\right)=a\left(2a-2c\right)=2a^2-2ac\)

B2:

\(\)\(x+y=3=>\left(x+y\right)^2=9=>x^2+2xy+y^2=9\)

\(=>xy=\dfrac{9-\left(x^2+y^2\right)}{2}=\dfrac{9-\left(17\right)}{2}=-4\)

\(=>x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3\left(17+4\right)=63\)

Bài 1: 

a) Ta có: \(\left(x+y\right)^2-\left(x-y\right)^2\)

\(=x^2+2xy+y^2-x^2+2xy+y^2\)

=4xy

b) Ta có: \(\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x+y-x+y\right)^2\)

\(=\left(2y\right)^2=4y^2\)

c) Ta có: \(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^2-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)

\(=\left(x^3-1\right)\left(x^3+1\right)\)

\(=x^6-1\)

d) Ta có: \(\left(a+b-c\right)^2+\left(a+b+c\right)^2-2\left(b-c\right)^2\)

\(=\left(a+b-c\right)^2-\left(b-c\right)^2+\left(a+b+c\right)^2-\left(b-c\right)^2\)

\(=\left(a+b-c-b+c\right)\left(a+b-c+b-c\right)+\left(a+b+c-b+c\right)\left(a+b+c+b-c\right)\)

\(=a\cdot\left(a+2b-2c\right)+\left(a+2c\right)\left(a-2b\right)\)

\(=a^2+2ab-2ac+a^2-2ab+2ac-4bc\)

\(=2a^2-4bc\)