\(\left(1-\frac{1}{10}\right)\left(1-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2015

\(A=\left(1-\frac{1}{10}\right)\left(1-\frac{1}{11}\right)\left(1-\frac{1}{12}\right)...\left(1-\frac{1}{2007}\right)\left(1-\frac{1}{2008}\right)\)

     \(=\frac{9}{10}.\frac{10}{11}.\frac{11}{12}.....\frac{2006}{2007}.\frac{2007}{2008}\)

     \(=\frac{9.10.11.....2006.2007}{10.11.12.....2007.2008}\)

     \(=\frac{9}{2008}\)

\(Ta\) \(có:\)

\(A=\frac{9}{2008}\)

\(B=\frac{1}{2000}\)

\(\frac{9}{2008}=\frac{9.250}{2008.250}=\frac{2250}{502000}\)

\(\frac{1}{2000}=\frac{1.251}{2000.251}=\frac{251}{502000}\)

Vì \(\frac{2250}{502000}>\frac{251}{502000}\Rightarrow A>B\)

 

7 tháng 8 2015

\(A=\left(1-\frac{1}{10}\right)\left(1-\frac{1}{11}\right)\left(1-\frac{1}{12}\right)...\left(1-\frac{1}{2007}\right)\left(1-\frac{1}{2008}\right)\)

\(A=\frac{9}{10}.\frac{10}{11}.\frac{11}{12}....\frac{2006}{2007}.\frac{2007}{2008}\)

\(A=\frac{9.10.11....2006.2007}{10.11.12...2007.2008}\)

\(A=\frac{9}{2008}\)

 

Vì \(\frac{9}{2008}<\frac{1}{2000}\)

hay A<B

 

16 tháng 8 2016

a) số số x là 4 nên ta có:

(x.4)+1/2+1/4+1/8+1/16=1 mà 1/2+1/4+1/8+1/16=15/16 nên x=1-15/16=1/16:4=1/64

4 tháng 5 2016

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2009}\right)\)

=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2008}{2009}\)

=\(\frac{1}{2009}\)

14 tháng 4 2017

\(\frac{2011.4023+2012}{2012.4023-2011}=\frac{2011.4023+2011+1}{2012.4023-2012-1}=\frac{2011.4023+2011.1+1}{2012.4023-2012.1-1}\)

\(=>\frac{2012.4023+2012.1+1}{2012.4023-2012.1-1}=\frac{2012.\left(4023+1\right)+1}{2012.\left(4023-1\right)-1}\)

\(=\frac{4023+1+1}{4023-1-1}=\frac{4023+2}{4023-2}=\frac{4025}{4021}\)

Vì 4025 > 4021 ( tử số lớn hơn mẫu số ) nên suy ra : 4025/4021 >1

25 tháng 3 2018

<br class="Apple-interchange-newline"><div id="inner-editor"></div>=>2012.4023+2012.1+12012.4023−2012.1−1 =2012.(4023+1)+12012.(4023−1)−1 

=4023+1+14023−1−1 =4023+24023−2 =40254021 

Vì 4025 > 4021 ( tử số lớn hơn mẫu số ) nên suy ra : 4025/4021 >1

4 tháng 5 2016

  (1-1/2)(1-1/3)(1-1/4)...(1-1/2009)

=1/2*2/3*3/4*...*2008/2009

=\(\frac{1\cdot2\cdot3\cdot...\cdot2008}{2\cdot3\cdot4\cdot...\cdot2009}\)

=1/2009

4 tháng 5 2016

=1/2x2/3x3/4x...../2008/2009

=1/2009

2 tháng 3 2016

b)\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{100}-1\right)=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}....\frac{-99}{100}=\frac{-1.\left(-2\right).\left(-3\right)...\left(-99\right)}{2.3.4...100}=-\frac{1}{100}\)

15 tháng 2 2020

a) \(2\frac{3}{4}\cdot\left(-0,4\right)-1\frac{3}{5}\cdot2,75+1,2:\frac{4}{11}\)

\(=2\frac{3}{4}\cdot\left(-\frac{2}{5}\right)-1\frac{3}{5}\cdot\frac{11}{4}+\frac{6}{5}:\frac{4}{11}\)

\(=\frac{11}{4}\cdot\left(-\frac{2}{5}\right)-1\frac{3}{5}\cdot\frac{11}{4}+\frac{6}{5}\cdot\frac{11}{4}\)

\(=\frac{11}{4}\left(-\frac{2}{5}-1\frac{3}{5}+\frac{6}{5}\right)\)

\(=\frac{11}{4}\left(-\frac{2}{5}-\frac{8}{5}+\frac{6}{5}\right)\)

\(=\frac{11}{4}\cdot\left(-\frac{4}{5}\right)=\frac{11}{1}\cdot\left(-\frac{1}{5}\right)=-\frac{11}{5}\)

b) \(\left(\frac{1}{2}+1\right)\cdot\left(\frac{1}{3}+1\right)\cdot\left(\frac{1}{4}+1\right)....\left(\frac{1}{31}+1\right)\)

\(=\left(\frac{1}{2}+\frac{2}{2}\right)\left(\frac{1}{3}+\frac{3}{3}\right)\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{31}+\frac{31}{31}\right)\)

\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{32}{31}\)

\(=\frac{3\cdot4\cdot5\cdot...\cdot32}{2\cdot3\cdot4\cdot...\cdot31}=\frac{32}{2}=16\)

c) Đặt \(C=1+2+3+...+30\)

Số số hạng là : \(\left(30-1\right):1+1=30\)(số)

Tổng của dãy số là : \(\frac{\left(1+30\right)\cdot30}{2}=465\)

Do đó : \(\frac{930}{C}=\frac{930}{465}=2\)

15 tháng 8 2019

\(A=49\frac{8}{23}-\left(5\frac{7}{32}+14\frac{8}{23}\right)\)

\(A=49\frac{8}{23}-5\frac{7}{32}+14\frac{8}{23}\)

\(A= \left(49\frac{8}{23}-14\frac{8}{23}\right)-5\frac{7}{32}\)

\(A=\left[\left(49-14\right)-\left(\frac{8}{23}-\frac{8}{23}\right)\right]-5\frac{7}{32}\)

\(A=\left[35-0\right]-5\frac{7}{32}\)

\(A=35-5\frac{7}{32}\)

\(A=\frac{953}{32}\)

\(B=71\frac{38}{45}-\left(43\frac{38}{45}-1\frac{17}{57}\right)\)

\(B=71\frac{38}{45}-\frac{36377}{855}\)

\(B=\frac{1670}{57}\)

\(C=\left(19\frac{5}{8}:\frac{7}{12}-13\frac{1}{4}:\frac{7}{12}\right):\frac{4}{5}\)

\(C=\left[\left(19\frac{5}{8}-13\frac{1}{4}\right):\frac{7}{12}\right]:\frac{4}{5}\)

\(C=\left[\frac{51}{8}:\frac{7}{12}\right]:\frac{4}{5}\)

\(C=\frac{153}{14}:\frac{4}{5}\)

\(C=\frac{765}{56}\)

\(D=\left[\left(\frac{10}{15}-\frac{2}{3}\right):\frac{1}{7}\right]\cdot0,15-\frac{1}{4}\)

\(D=\left[0:\frac{1}{7}\right]\cdot\frac{3}{20}-\frac{1}{4}\)

\(D=0\cdot\frac{3}{20}-\frac{1}{4}\)

\(D=0-\frac{1}{4}\)

\(D=-\frac{1}{4}\)

\(E=\frac{13}{30}+\frac{28}{45}\cdot2\frac{1}{2}-\left[\left(\frac{1}{2}+\frac{1}{3}\right):\frac{53}{90}\right]:\frac{50}{53}\)

\(E=\frac{13}{30}+\frac{28}{45}\cdot\frac{5}{2}-\left[\frac{5}{6}:\frac{53}{90}\right]:\frac{50}{53}\)

\(E=\frac{13}{30}+\frac{28}{45}\cdot\frac{5}{2}-\frac{75}{53}:\frac{50}{53}\)

\(E=\frac{13}{30}+\frac{14}{9}-\frac{3}{2}\)

\(\)\(E=\frac{22}{45}\)

CHUC BAN HOC TOT >.<