\(=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2019

\(A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

\(\Leftrightarrow A^3=9+4\sqrt{5}+9-4\sqrt{5}\)

\(+3\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\)

\(\Leftrightarrow A^3=18+3A\Leftrightarrow A^3-3A-18=0\)

\(\Leftrightarrow\left(A-3\right)\left(A^2+3A+6\right)=0\)

Dễ thấy : \(A^2+3A+6=\left(A+\frac{3}{2}\right)^2+\frac{15}{4}\ge0\forall A\)

\(\Leftrightarrow A=3\)

Chúc bạn học tốt !!!

3 tháng 10 2019

\(A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

\(\Leftrightarrow A^3=9+4\sqrt{5}+9-4\sqrt{5}\)

\(+3\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\)

\(\Leftrightarrow A^3+18+3A\Leftrightarrow A^3-3A-18=0\)

\(\Leftrightarrow\left(A-3\right)\left(A^2+3A+6\right)=0\)

Dễ thấy : \(A^2+3A+6=\left(A+\frac{3}{2}\right)^2+\frac{15}{4}\ge0\forall A\)

\(\Leftrightarrow A=3\)

Chúc bạn học tốt !!!

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

26 tháng 8 2020

Đặt \(a=\sqrt[3]{9+4\sqrt{5}},b=\sqrt[3]{9-4\sqrt{5}}\)

\(\Rightarrow\hept{\begin{cases}a+b=x\\ab=1\end{cases}}\)

Ta có: \(x^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

\(\Rightarrow x^3=\left(9+4\sqrt{5}\right)+\left(9-4\sqrt{5}\right)+3.1.x\)

\(\Leftrightarrow x^3=18+3x\)

\(\Leftrightarrow x^3-3x-18=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+6\right)=0\)

Vì \(x^2+3x+6=\left(x+\frac{3}{2}\right)^2+\frac{15}{4}>0\)

\(\Rightarrow x-3=0\Leftrightarrow x=3\)

Thay x=3 vào \(x^5-3x-18=0\), thấy không thoả mãn.

KL: Đề sai !

21 tháng 7 2018

A. -0,8 ×0,125=-0,1

b. 2^3+3^2=8+9=17

c.=1

d.=-2

13 tháng 7 2017

\(C=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\frac{\sqrt[6]{\left(7-4\sqrt{3}\right).\left(7+4\sqrt{3}\right)}-x}{\sqrt[4]{\left(9+4\sqrt{5}\right).\left(9-4\sqrt{5}\right)}+\sqrt{x}}\)

\(=\sqrt{x}+\frac{1-x}{1+\sqrt{x}}=\sqrt{x}+\frac{\left(1+\sqrt{x}\right).\left(1-\sqrt{x}\right)}{1+\sqrt{x}}\)

\(=\sqrt{x}+1-\sqrt{x}=1\)

AH
Akai Haruma
Giáo viên
12 tháng 7 2018

1)

ĐK: \(x\geq 2\)

\(\sqrt{x-2}-3\sqrt{x^2-4}=0\)

\(\Leftrightarrow \sqrt{x-2}-3\sqrt{(x-2)(x+2)}=0\)

\(\Leftrightarrow \sqrt{x-2}(1-3\sqrt{x+2})=0\)

\(\Rightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x+2}=\frac{1}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=\frac{-17}{9}(\text{loại vì x}\geq 2)\end{matrix}\right.\)

Vậy $x=2$ là nghiệm của pt

AH
Akai Haruma
Giáo viên
12 tháng 7 2018

2) ĐK: \(x\geq 1\)

Ta có: \(x+\sqrt{x-1}=13\)

\(\Leftrightarrow (x-1)+\sqrt{x-1}+\frac{1}{4}=\frac{49}{4}\)

\(\Leftrightarrow (\sqrt{x-1}+\frac{1}{2})^2=\frac{49}{4}\)

\(\sqrt{x-1}+\frac{1}{2}>0\) nên \(\sqrt{x-1}+\frac{1}{2}=\sqrt{\frac{49}{4}}=\frac{7}{2}\)

\(\Rightarrow \sqrt{x-1}=3\)

\(\Rightarrow x=3^2+1=10\) (thỏa mãn)

Vậy.......

2 tháng 8 2017

=18,89223932