\(S=1^2+2^2+3^2+....+n^2\)

b, \(S=1^3+2^3+3^3...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

a) 2 +4+6+8+...+2018

= ( 2018+2) x 1009 : 2

= 2020 x 1009 : 2

= 1009 x (2020:2)

= 1009 x 1010

= 1 019 090

b) S = 10 + 102 + 103 + ...+ 10100

=> 10.S = 102 + 103 + 104 +...+ 10101

=> 10.S - S = 10101-10

9.S=10101- 10

\(\Rightarrow S=\frac{10^{101}-10}{9}\)

c) \(S=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(\Rightarrow5S=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(5S-S=1-\frac{1}{5^{100}}\)

\(4S=1-\frac{1}{5^{100}}\)

\(S=\frac{1-\frac{1}{5^{100}}}{4}\)

e cx ko nx, e ms hok lp 7 thoy, sang hè ms lp 8! e sr cj nhiều nha!

24 tháng 6 2018

d) \(S=\frac{1!}{3!}+\frac{2!}{4!}+\frac{3!}{5!}+...+\frac{2018!}{2020!}\)

\(S=\frac{1}{1.2.3}+\frac{1.2}{1.2.3.4}+\frac{1.2.3}{1.2.3.4.5}+...+\frac{1.2.3...2018}{1.2.3...2020}\)

\(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2019.2020}\)

\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(S=\frac{1}{2}-\frac{1}{2020}\)

\(S=\frac{1009}{2020}\)

13 tháng 3 2018

(1) D

(2) C

(3) D

12 tháng 4 2020

Câu 1: D. \(\frac{1}{2}-4x=0\)

Câu 2: C. 2x - 1 = x

Câu 3: D. S = {-9}

# Chúc bạn học tốt #

12 tháng 2 2018

=1 mk nhầm đề

4 tháng 8 2018

Bài 1:

a) \(\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\)

\(=2^{16}-1\)

b) Sửa đề \(8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)

\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)

\(=\left(3^{32}-1\right)\left(3^{32}+1\right)-3^{64}\)

\(=3^{64}-1-3^{64}\)

\(=-1\)

Bài 2:

Ta có:

\(A=2009.2009\)

\(A=2009\left(2008+1\right)\)

\(A=2009.2008+2009\)

Ta lại có:

\(B=2008.2010\)

\(B=2008\left(2009+1\right)\)

\(B=2008.2009+2008\)

Vì 2008.2009 = 2009.2008

2009 > 2008

=> 2008.2009 + 2009 > 2009.2008 + 2008

=> A > B

4 tháng 8 2018

1,a,(2-1)(2+1)(22+1)(24+1)(28+1)

=(22-1)(22+1)(24+1)(28+1)

=(24-1) (24+1)(28+1)

=(28 -1)(28+1)=216-1

2,

A=2009.2009=20092

B=2008.2010=(2009-1)(2009+1)=20092-1

Do20092>20092-1\(\Rightarrow A>B\)

2 tháng 8 2017

Phần a thành nhân tử sẵn rồi bạn:)

b,\(x^6-9x^3+8=x^6-x^3-8x^3+8\)

\(=x^3\left(x^3-1\right)-8\left(x^2-1\right)\)

\(=x^3\left(x-1\right)\left(x^2+x+1\right)-8\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x^4-x^3-8x-1\right)\)

16 tháng 8 2016

A= ... (mik k rảh viết vào) 3/2 > ... vì 3/2 > 1 còn ... < 1

B = .... 2/3 < vì 2/3 <1 còn ... > 1

5 tháng 10 2018

\(a^2+b^2+c^2=a^3+b^3+c^3 \Rightarrow a^2(1-a)+b^2(1-b)+c^2(1-c)=0(1)\)

Mà \(a^2+b^2+c^2=1\) nên \(a\leq1\),\(b\leq1\),\(c\leq1\)( do \(a^2 \geq 0\))=>\(1-c\leq0\)

hay \(a^2(1-a) \leq 0\)\(b^2(1-b) \leq 0\)\(c^2(1-c) \leq 0\)

\(\Rightarrow a^2(1-a)+b^2(1-b)+c^2(1-c) \leq 0(2)\)

Từ (1)(2) suy ra (1) xảy ra khi và chỉ khi 1 trong 3 số bằng 1 và 2 số còn lại bằng 0.

Nên P=1.

5 tháng 10 2018

1-c\(\ge0\)mà bn