
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



a) 2 +4+6+8+...+2018
= ( 2018+2) x 1009 : 2
= 2020 x 1009 : 2
= 1009 x (2020:2)
= 1009 x 1010
= 1 019 090
b) S = 10 + 102 + 103 + ...+ 10100
=> 10.S = 102 + 103 + 104 +...+ 10101
=> 10.S - S = 10101-10
9.S=10101- 10
\(\Rightarrow S=\frac{10^{101}-10}{9}\)
c) \(S=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(\Rightarrow5S=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(5S-S=1-\frac{1}{5^{100}}\)
\(4S=1-\frac{1}{5^{100}}\)
\(S=\frac{1-\frac{1}{5^{100}}}{4}\)
e cx ko nx, e ms hok lp 7 thoy, sang hè ms lp 8! e sr cj nhiều nha!
d) \(S=\frac{1!}{3!}+\frac{2!}{4!}+\frac{3!}{5!}+...+\frac{2018!}{2020!}\)
\(S=\frac{1}{1.2.3}+\frac{1.2}{1.2.3.4}+\frac{1.2.3}{1.2.3.4.5}+...+\frac{1.2.3...2018}{1.2.3...2020}\)
\(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2019.2020}\)
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(S=\frac{1}{2}-\frac{1}{2020}\)
\(S=\frac{1009}{2020}\)

Câu 1: D. \(\frac{1}{2}-4x=0\)
Câu 2: C. 2x - 1 = x
Câu 3: D. S = {-9}
# Chúc bạn học tốt #

Bài 1:
a) \(\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\)
\(=2^{16}-1\)
b) Sửa đề \(8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)
\(=\left(3^{32}-1\right)\left(3^{32}+1\right)-3^{64}\)
\(=3^{64}-1-3^{64}\)
\(=-1\)
Bài 2:
Ta có:
\(A=2009.2009\)
\(A=2009\left(2008+1\right)\)
\(A=2009.2008+2009\)
Ta lại có:
\(B=2008.2010\)
\(B=2008\left(2009+1\right)\)
\(B=2008.2009+2008\)
Vì 2008.2009 = 2009.2008
2009 > 2008
=> 2008.2009 + 2009 > 2009.2008 + 2008
=> A > B
1,a,(2-1)(2+1)(22+1)(24+1)(28+1)
=(22-1)(22+1)(24+1)(28+1)
=(24-1) (24+1)(28+1)
=(28 -1)(28+1)=216-1
2,
A=2009.2009=20092
B=2008.2010=(2009-1)(2009+1)=20092-1
Do20092>20092-1\(\Rightarrow A>B\)

Phần a thành nhân tử sẵn rồi bạn:)
b,\(x^6-9x^3+8=x^6-x^3-8x^3+8\)
\(=x^3\left(x^3-1\right)-8\left(x^2-1\right)\)
\(=x^3\left(x-1\right)\left(x^2+x+1\right)-8\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x^4-x^3-8x-1\right)\)

o: \(x^3-xy^2+x^2y-y^3\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)^2\)
p: \(a^3-ma-mb+b^3\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)-m\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2-m\right)\)
q: \(\left(3x+1\right)^3-\left(1-2x\right)^3\)
\(=\left(3x+1\right)^3+\left(2x-1\right)^3\)
\(=\left(3x+1+2x-1\right)\left[\left(3x+1\right)^2-\left(3x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\right]\)
\(=5x\left[9x^2+6x+1-6x^2+3x-2x+1+4x^2-4x+1\right]\)
\(=5x\left(7x^2+5x+3\right)\)
dùng xích-ma
xích ma j