Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{1}{5}+\dfrac{5}{6}-\dfrac{9}{10}\right).\dfrac{3}{5}-0,75:1\dfrac{1}{2}-1,25^2\)
\(=\left(\dfrac{1}{5}+\dfrac{5}{6}-\dfrac{9}{10}\right).\dfrac{3}{5}-\dfrac{3}{4}:\dfrac{3}{2}-\dfrac{25}{16}\) \(=\left(\dfrac{31}{30}-\dfrac{9}{10}\right).\left(-\dfrac{3}{20}\right):\left(-\dfrac{1}{16}\right)\\ \\ \\ \\ \\ \\ \\ \\ \\ =\dfrac{2}{15}.\left(-\dfrac{3}{20}\right):\left(-\dfrac{1}{16}\right)\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ =\left(-\dfrac{1}{50}\right):\left(-\dfrac{1}{16}\right)\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ =\dfrac{8}{25}\)
a) ( x + 5 )3 = -64
x + 5 = - 4
x = - 4 - 5
x = -9
b) (2x - 3)2=9
2x - 3 = 3
2x = 3+3
2x = 6
x = 6 : 2
x = 3
e) \(\dfrac{8}{2x}=4\)
=> 4 . 2x = 8
8x =8
x = 8 : 8
x = 1
g) \(\left(\dfrac{1}{2}\right)^{2x-1}=\dfrac{1}{8}\)
\(\left(\dfrac{1}{2}\right)^{2x}:\left(\dfrac{1}{2}\right)^1=\dfrac{1}{8}\)
\(\left(\dfrac{1}{2}\right)^{2x}:\dfrac{1}{2}=\dfrac{1}{8}\)
\(\left(\dfrac{1}{2}\right)^{2x}=\dfrac{1}{8}.\dfrac{1}{2}\)
\(\left(\dfrac{1}{2}\right)^{2x}=\dfrac{1}{16}\)
\(\left(\dfrac{1}{2}\right)^{2x}=\left(\dfrac{1}{2}\right)^{2.2}\)
=> x = 2
h) \(\left(\dfrac{1}{2}\right)^2.x=\left(\dfrac{1}{2}\right)^5\)
\(\dfrac{1}{4}.x=\dfrac{1}{32}\)
x = \(\dfrac{1}{32}:\dfrac{1}{4}\)
x = \(\dfrac{1}{8}\)
i) \(\left(\dfrac{-1}{3}\right)x=\dfrac{1}{81}\)
\(x=\dfrac{1}{81}:\left(\dfrac{-1}{3}\right)\)
\(x=\dfrac{-1}{27}\)
a) (x + 5)3 = -64
=> (x + 5)3 = (-4)3
x + 5 = -4
x = -4 - 5
x = -9
b) (2x - 3)2 = 9
=> (2x - 3)2 = (\(\pm\)3)2
=> 2x - 3 = 3 hoặc 2x - 3 = -3
*2x - 3 = 3
2x = 3 + 3
2x = 9
x = \(\dfrac{9}{2}\)
*2x - 3 = -3
2x = -3 + 3
2x = 0
x = 0 : 2
x = 0
Vậy x \(\in\left\{\dfrac{9}{2};0\right\}\)
c) \(\dfrac{x}{\dfrac{4}{2}}=\dfrac{4}{\dfrac{x}{2}}\)
=> \(x.\dfrac{x}{2}=4.\dfrac{4}{2}\)
\(\dfrac{x}{2}=8\)
x = 8 : 2
x = 4
d) \(\dfrac{-32}{\left(-2\right)^n}=4\)
\(\Rightarrow\dfrac{\left(-2\right)^5}{\left(-2\right)^n}=\left(-2\right)^2\)
=> (-2)n . (-2)2= (-2)5
(-2)n = (-2)5 : (-2)2
(-2)n = (-2)3
Vậy n = 3
e) \(\dfrac{8}{2x}=4\)
=> 2x . 4 = 8
2x = 8 : 4
2x = 2
x = 1
g) \(\left(\dfrac{1}{2}\right)^{2x-1}=\dfrac{1}{8}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^3\)
2x - 1 = 3
2x = 3 + 1
2x = 4
x = 4 : 2
x = 2
h) \(\left(\dfrac{1}{2}\right)^2.x=\left(\dfrac{1}{2}\right)^5\)
\(x=\left(\dfrac{1}{2}\right)^5:\left(\dfrac{1}{2}\right)^2\)
\(x=\left(\dfrac{1}{2}\right)^3\)
\(x=\dfrac{1}{8}\)
i) \(\left(\dfrac{-1}{3}\right)x=\dfrac{1}{81}\)
\(x=\dfrac{1}{81}:\left(\dfrac{-1}{3}\right)\)
\(x=\left(\dfrac{-1}{3}\right)^4:\left(\dfrac{-1}{3}\right)\)
\(x=\left(\dfrac{-1}{3}\right)^3\)
\(x=\dfrac{-1}{27}\).
\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\dfrac{2^{10}.3^8-2.3^9.2^9}{2^{10}.3^8+2^8.3^8.2^2.5}=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)
\(=\dfrac{2^{10}.\left(3^8-3^9\right)}{2^{10}.3^8.\left(1+5\right)}=\dfrac{3^8-3^9}{3^8.6}=\dfrac{3^8.\left(1-3\right)}{3^8.6}=\dfrac{-2}{6}=-\dfrac{1}{3}\)
~ Học tốt ~
Bài 1:
1) \(3^2.\dfrac{1}{243}.81^2.\dfrac{1}{3^3}\)
\(=3^2.\left(\dfrac{1}{3}\right)^5.\left(3^4\right)^2.\dfrac{1}{3^3}\)
\(=3^2.\dfrac{1}{3^5}.3^8.\dfrac{1}{3^3}\)
\(=3^2=9\)
2) \(\left(4.2^5\right):\left(2^3.\dfrac{1}{16}\right)\)
\(=\left(2^2.2^5\right):[2^3.\left(\dfrac{1}{2}\right)^4]\)
\(=2^7:2^3:\dfrac{1}{2^4}\)
\(=2^4.2^4=256\)
3)\(\left(2^{-1}+3^{-1}\right)+\left(2^{-1}.2^0\right):2^3\)
\(=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2}.1:2^3\)
\(=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2^4}\)
\(=\dfrac{43}{48}\)
4)\(\left(-\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=-3-1+\dfrac{1}{4}.\dfrac{1}{2}\)
\(=-3-1+\dfrac{1}{8}\)
\(=-4+\dfrac{1}{8}\\ \)
\(=-\dfrac{31}{8}\)
5)\([\left(0,1\right)^2]^0+[\left(\dfrac{1}{7}\right)^{-1}]^2.\dfrac{1}{49}.[\left(2^2\right)^3:2^5]\\ =1+7^2.\dfrac{1}{7^2}.2^6:2^5\\ =1+1.2\\ =3\)
Chúc bạn học tốt
a: TH1: x>=0
=>x+x=1/3
=>x=1/6(nhận)
TH2: x<0
Pt sẽ là -x+x=1/3
=>0=1/3(loại)
b: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x^2-x-2=0\end{matrix}\right.\Leftrightarrow x=2\)
c: \(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-8}+\dfrac{1}{x-8}-\dfrac{1}{x-20}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{2}{x-20}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{x-20-2x+2}{\left(x-1\right)\left(x-20\right)}=\dfrac{-3}{4}\)
\(\Leftrightarrow-3\left(x^2-21x+20\right)=4\left(-x-18\right)\)
\(\Leftrightarrow3x^2-63x+60=4x+72\)
=>3x^2-67x-12=0
hay \(x\in\left\{22.51;-0.18\right\}\)
a) \(x+\dfrac{3}{10}=\dfrac{-2}{5}\)
\(x=\dfrac{-2}{5}-\dfrac{3}{10}\)
\(x=\dfrac{-7}{10}\)
b) \(x+\dfrac{5}{6}=\dfrac{2}{5}-\left(-\dfrac{2}{3}\right)\)
\(x+\dfrac{5}{6}=\dfrac{2}{5}+\dfrac{2}{3}\)
\(x+\dfrac{5}{6}=\dfrac{16}{15}\)
\(x=\dfrac{16}{15}-\dfrac{5}{6}\)
\(x=\dfrac{7}{30}\)
c) \(1\dfrac{2}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)
\(\dfrac{7}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)
\(\dfrac{7}{5}x=-\dfrac{4}{5}-\dfrac{3}{7}\)
\(\dfrac{7}{5}x=\dfrac{-43}{35}\)
\(\Rightarrow x=\dfrac{-43}{49}\)
d) \(\left[x+\dfrac{3}{4}\right]-\dfrac{1}{3}=0\)
\(\left[x+\dfrac{3}{4}\right]=0+\dfrac{1}{3}\)
\(\left[x+\dfrac{3}{4}\right]=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}-\dfrac{3}{4}\)
\(x=\dfrac{-5}{12}\)
e) \(\left[x+\dfrac{4}{5}\right]-\left(-3,75\right)=-\left(-2,15\right)\)
\(\left[x+\dfrac{4}{5}\right]+3,75=2,15\)
\(x+\dfrac{4}{5}=2,15-3,75\)
\(x+\dfrac{4}{5}=-\dfrac{8}{5}\)
\(x=\dfrac{-8}{5}-\dfrac{4}{5}\)
\(x=\dfrac{-12}{5}\)
f) \(\left(x-2\right)^2=1\)
\(\Rightarrow x=1\)
Sức chịu đựng có giới hạn -.-
- Mình tiếp tục cho Nguyễn Phương Trâm nhé.
g, \(\left(2x-1\right)^3=-27\)
\(\Rightarrow\left(2x-1\right)^3=\left(-3\right)^3\)
\(\Rightarrow2x-1=-3\)
\(\Rightarrow2x=-2\)
=> \(x=-1\)
- Vậy x = -1
h,\(\dfrac{x-1}{-15}=-\dfrac{60}{x-1}\)
\(\Rightarrow\left(x-1\right)^2=-60.\left(-15\right)\)
\(\Rightarrow\left(x-1\right)^2=900 \)
\(\Rightarrow\left(x-1\right)^2=30^2\Rightarrow x-1=30\)
=> x = 31
i,\(x:\left(\dfrac{-1}{2}\right)^3=\dfrac{-1}{2}\)
=> \(x:\left(-\dfrac{1}{8}\right)=-\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{16}\)
- Vậy x=\(\dfrac{1}{16}\)
j, \(\left(\dfrac{3}{4}\right)^5.x=\left(\dfrac{3}{4}\right)^7\)
\(\Rightarrow \left(\dfrac{3}{4}\right).x=\left(\dfrac{3}{4}\right)^2\)
\(\Rightarrow x=\left(\dfrac{3}{4}\right)^2:\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{3}{4}\)
- Vạy x = \(\dfrac{3}{4}\)
k, \(8^x:2^x=4\Rightarrow\left(8:2\right)^x=4\)
=>\(4^x=4\)
=> x = 1
- Vậy x = 1
a: \(=\left(\dfrac{1}{4}+\dfrac{3}{4}\right)\cdot\dfrac{18}{5}-\dfrac{6}{5}:\dfrac{-9}{5}+4\)
\(=\dfrac{18}{5}-\dfrac{6}{5}\cdot\dfrac{-5}{9}+4\)
\(=\dfrac{18}{5}+\dfrac{2}{3}+4\)
\(=\dfrac{124}{15}\)
b: \(=\dfrac{9}{25}\cdot\left(\dfrac{3}{5}-\dfrac{1}{5}+\dfrac{1}{2}\right)-\dfrac{3}{8}:\dfrac{9}{8}\)
\(=\dfrac{9}{25}\cdot\dfrac{4}{10}-\dfrac{1}{3}\)
\(=-\dfrac{71}{375}\)
c: \(=\dfrac{7}{10}:\dfrac{4}{5}+\dfrac{2}{9}:\dfrac{5}{9}+\dfrac{1}{8}\)
\(=\dfrac{7}{10}\cdot\dfrac{5}{4}+\dfrac{2}{5}+\dfrac{1}{8}\)
=1+2/5
=7/5
d: \(=\dfrac{3}{7}\left(19+\dfrac{1}{3}-33-\dfrac{1}{3}\right)-\dfrac{2}{7}=\dfrac{3}{7}\cdot\left(-14\right)-\dfrac{2}{7}=-6-\dfrac{2}{7}=\dfrac{-44}{7}\)
e: \(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{-2^{11}\cdot3^{11}-2^{12}\cdot3^{12}}\)
\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{-2^{11}\cdot3^{11}\left(1+2\cdot3\right)}=-\dfrac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot7}=\dfrac{-4}{7}\)
Vì có 98 số hạng -> tích là số chẵn -> làm như dạng bt ! ( đổi ngc lại thành 1 - nhìn cho quen mắt )
1: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{18}\)
=>4x=18
hay x=9/2
2: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^{36}\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{108}\)
=>4x=108
hay x=27
3: \(\left(\dfrac{1}{81}\right)^x=\left(\dfrac{1}{27}\right)^4\)
\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{4x}=\left(\dfrac{1}{3}\right)^{12}\)
=>4x=12
hay x=3
\(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)..............\left(1-\dfrac{1}{n+1}\right)\)
\(=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\left(\dfrac{3}{3}-\dfrac{1}{3}\right)........\left(\dfrac{n+1}{n+1}-\dfrac{1}{n+1}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}..........\dfrac{n}{n+1}\)
\(=\dfrac{1}{n+1}\)