Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vậy thì chệu gồi tại B với aphla không liện quan nên không tính được nha bạn
\(1+\sin^2\alpha+\cos^2\alpha=1+1=2\)
\(\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha\cdot\cos^2\alpha\\ =\left(\sin^2\alpha\right)^2+2\sin^2\alpha\cdot\cos^2\alpha+\left(\cos^2\alpha\right)^2\\ =\left(\sin^2\alpha+\cos^2\alpha\right)^2\\ =1^2=1\)
\(\tan^2\alpha-\sin^2\alpha\cdot\tan^2\alpha\\ =\tan^2\alpha\left(1-\sin^2\alpha\right)\\ =\left(\frac{\sin\alpha}{\cos\alpha}\right)^2\cdot\cos^2\alpha\\ =\frac{\sin^2\alpha}{\cos^2\alpha}\cdot\cos^2\alpha\\ =\sin^2\alpha\)
\(\cos^2\alpha+\tan^2\alpha\cdot\cos^2\alpha\\ =\cos^2\alpha+\left(\frac{\sin\alpha}{\cos\alpha}\right)^2\cdot\cos^2\alpha\\ =\cos^2\alpha+\frac{\sin^2\alpha}{\cos^2\alpha}\cdot\cos^2\alpha\\ =\cos^2\alpha+\sin^2\alpha\\ =1\)
\(\tan^2\alpha\cdot\left(2\cos^2\alpha+\sin^2\alpha-1\right)\\ =\tan^2\alpha\cdot\left(2\cos^2\alpha+\sin^2\alpha-\sin^2\alpha-\cos^2\alpha\right)\\ =\tan^2\alpha\cdot\cos^2\alpha\\ =\frac{\sin^2\alpha}{\cos^2\alpha}\cdot\cos^2\alpha=\sin^2\alpha\)
Lời giải:
\(A=(\sin ^2a)^3+(\cos ^2a)^3+3\sin ^2a\cos ^2a(\sin ^2a+\cos ^2a)\)
\(=(\sin ^2a+\cos ^2a)^3=1^3=1\)
\(B=(\cos ^2a+\sin ^2a-2\sin a\cos a)+(\cos ^2a+\sin ^2a+2\sin a\cos a)\)
\(=(1-2\sin a\cos a)+(1+2\sin a\cos a)=2\)
\(C=\frac{(\cos ^2a+\sin ^2a-2\sin a\cos a)-(\cos ^2a+\sin ^2a+2\sin a\cos a)}{\sin a\cos a}=\frac{(1-2\sin a\cos a)-(1+2\sin a\cos a)}{\sin a\cos a}\)
$=\frac{-4\sin a\cos a}{\sin a\cos a}=-4$
\(=\frac{\left(sina+cosa\right)\left(sina-cosa\right)}{sin^2a+cos^2a+2sina\cdot cosa}\) =\(\frac{\left(sina+cosa\right)\left(sina-cosa\right)}{\left(sina+cosa\right)^2}=\frac{sina-cosa}{sina+cosa}=\frac{tana-1}{\tan a+1}\)
giả sử tam giác ABC vuông tại A, \(\widehat{B}=\alpha=45^o\), kẻ trung tuyến AM
do \(\alpha< 45^o\Rightarrow2\alpha< 90^o\)và \(\widehat{C}=90^o-\alpha>45^o>\widehat{B}\)
tam giác ABC vuông tại A, trung tuyến AM nên \(MA=MB=MC=\frac{BC}{2};\widehat{AMC}=2\alpha\)(theo tính chất góc ngoài)
hạ HA _|_ BC trong tam giác AHM vuông tại M ta có \(\sin\alpha=\frac{AH}{AM}=\frac{2AH}{BC}\left(1\right)\)
trong tam giác AHB vuông tại H ta có \(\sin\alpha=\frac{AH}{AB}\left(2\right)\)
trong tam giác ABC vuông tại A ta có \(\sin\alpha=\frac{AB}{BC}\left(3\right)\)
từ (1) (2) và (3) => \(\sin2\alpha=2\cdot\frac{AH}{AB}\cdot\frac{AB}{BC}=2\sin\alpha\cos\alpha\)
tam giác AHM vuông tại H ta có \(\cos2\alpha=\frac{HM}{AM}=\frac{2HM}{BC}\left(4\right)\)
\(\cos^2\alpha-\sin^2\alpha=\frac{AB^2}{BC^2}-\frac{AC^2}{BC^2}=\frac{HB\cdot BC-HC\cdot BC}{BC^2}=\frac{HB-HC}{BC}=\frac{2HM}{BC}\left(5\right)\)
từ (4) và (5) suy ra \(\sin2\alpha=\cos^2\alpha-\sin^2\alpha\)
a) \(\frac{1+2sina.cosa}{cos^2a-sin^2a}=\frac{1+sin2a}{cos2a}\)
b) \(B=\left(1+tan^2a\right)\left(1-sin^2a\right)-\left(1+cot^2a\right)\left(1-cos^2a\right)\)
\(=\left(1+\frac{sin^2a}{cos^2a}\right)\left(sin^2a+cos^2a-sin^2a\right)-\left(1+\frac{cos^2a}{sin^2a}\right)\left(cos^2a+sin^2a-cos^2a\right)\)
\(=\left(\frac{cos^2a+sin^2a}{cos^2a}\right).cos^2a-\left(\frac{sin^2a+cos^2a}{sin^2a}\right).sin^2a\)
\(=\frac{1}{cos^2a}.cos^2a-\frac{1}{sin^2a}.sin^2a=1-1=0\)
c)
\(C=\left(sin^2a+cos^2a\right)^3-3.sin^2a.cos^2a\left(sin^2a+cos^2a\right)+3sin^2a.cos^2a\)
\(=1-3sin^2a.cos^2a\left(1-1\right)=1\)
a) \(\cos^4\alpha-\sin^4\alpha=\left(\cos^2\alpha+\sin^2\alpha\right)\left(\cos^2\alpha-\sin^2\alpha\right)=\cos^2\alpha-\sin^2\alpha\)
\(2\cos^2\alpha-\left(\sin^2\alpha+\cos^2\alpha\right)=2\cos^2\alpha-1\)
b) \(\frac{\cos\alpha}{1-\sin\alpha}=\frac{1+\sin\alpha}{\cos\alpha}\)\(\Leftrightarrow\)\(\left(1-\sin\alpha\right)\left(1+\sin\alpha\right)=\cos^2\alpha\)
\(\Leftrightarrow\)\(1-\left(\sin^2\alpha+\cos^2\alpha\right)=0\)\(\Leftrightarrow\)\(1-1=0\) ( luôn đúng )
c) \(\frac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha.\cos\alpha}=\frac{2\cos\alpha.2\sin\alpha}{\sin\alpha.\cos\alpha}=4\)
um, hình như câu b) chỗ 1-.... đó hơi sai nếu viết từ bước trên xuống á bạn!
mình nghĩ là: sau dấu bằng đầu tiên, sau đó là:
\(=cos^2\alpha=1-sin^2\alpha\)(luôn đúng)
CẢM ƠN bạn nhiều lắm luôn nha!!!!!
Lời giải:
Biểu thức $A$ dạng như vậy là gọn rồi bạn ạ. Biến đổi thêm cũng không có ý nghĩa.
----------
\(B=\sin ^2a+\sin 2a-3\cos ^3a\)
----------
\(C=\frac{\sin ^2a-\sin a\cos a-\cos ^2a}{2\sin a\cos a}=\frac{\sin a}{2\cos a}-\frac{1}{2}-\frac{\cos a}{2\sin a}\)
\(=\frac{\tan a-1-\cot a}{2}\)
Những biểu thức này đều không tính toán ra được giá trị cụ thể nên không phù hợp với yêu cầu "tính". Mình nghĩ bạn nên xem xét lại yêu cầu đề.