\(\frac{11}{1\cdot3}+\frac{11}{3\cdot5}+\).......\(\frac{11}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2015

\(A=\frac{11}{1\cdot3}+\frac{11}{3\cdot5}+...+\frac{11}{97.99}\)
     \(=\frac{11}{2}.\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{97.99}\right)\)
    \(=\frac{11}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)
    \(=\frac{11}{2}.\left(1-\frac{1}{99}\right)\)
    \(=\frac{11}{2}.\frac{98}{99}\)
    \(=\frac{1}{1}.\frac{49}{9}\)
    \(=\frac{98}{99}\)
 

15 tháng 3 2018

Gọi phân số cần tìm là \(\frac{a}{b}\) theo đề bài ta có : 

\(\frac{a}{b}=\frac{8}{18}=\frac{4}{9}\)\(\Rightarrow\)\(a=\frac{4b}{9}\) và \(ab=324\)

Thay \(a=\frac{4b}{9}\) vào \(ab=324\) ta được : \(\frac{4b}{9}.b=324\)

\(\Rightarrow\)\(\frac{4b^2}{9}=324\)

\(\Rightarrow\)\(4b^2=324.9\)

\(\Rightarrow\)\(4b^2=2916\)

\(\Rightarrow\)\(b^2=\frac{2916}{4}\)

\(\Rightarrow\)\(b^2=729\)

\(\Rightarrow\)\(b=\pm27\)

+) Với \(b=27\) thì \(a=\frac{4b}{9}=\frac{4.27}{9}=12\)

+) Với \(b=-729\) thì \(a=\frac{4.\left(-27\right)}{9}=-12\)

Vậy có hai phân số thoã mãn đề bài là \(\frac{12}{27}\) và \(\frac{-12}{-27}\)

Chúc bạn học tốt ~

15 tháng 3 2018

ta có 8/18=4/9

4/9=12/27

mà 12*27=324

Vậy phân số tìm laf12/27

nhớ tích nha

Câu 1(4,5 điểm) 1. Thực hiện phép tính:A=\(\frac{7}{19}\cdot\frac{8}{11}+\frac{7}{19}\cdot\frac{3}{11}+\frac{12}{19}\)B=\(\frac{2^{30}\cdot5^7+2^{13}\cdot5^{27}}{2^{27}\cdot5^7+2^{10}\cdot5^{27}}\)C=\(\frac{1}{2}\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2015\cdot2017}\right)\)2. Tìm x biết: \(\left(4+2^2+2^3+2^4+...+2^{20}\right)\cdot x=2^{22}-2^{21}\)Câu 2 (4,0 điểm)1. Cho phân...
Đọc tiếp

Câu 1(4,5 điểm) 

1. Thực hiện phép tính:

A=\(\frac{7}{19}\cdot\frac{8}{11}+\frac{7}{19}\cdot\frac{3}{11}+\frac{12}{19}\)

B=\(\frac{2^{30}\cdot5^7+2^{13}\cdot5^{27}}{2^{27}\cdot5^7+2^{10}\cdot5^{27}}\)

C=\(\frac{1}{2}\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2015\cdot2017}\right)\)

2. Tìm x biết: \(\left(4+2^2+2^3+2^4+...+2^{20}\right)\cdot x=2^{22}-2^{21}\)

Câu 2 (4,0 điểm)

1. Cho phân số: \(\frac{1+2+3+...+9}{11+12+13+...+19}\)

(tử số là tổng các số tự nhiên từ 1 đến 9; mẫu số là tổng các số tự nhiên từ 11 đến 19)

a) Rút gọn phân số trên

b) Hãy xoá một số hạng ở tử số và một số hạng ở mẫu số để được một phân số mới có giá trị bằng phân số ban đầu.

2. So sánh: D=\(\frac{8^{10}+1}{8^{10}-1}\)và E= \(\frac{8^{10}-1}{8^{10}-3}\)

Câu 3 (4,5 điểm)

1. Cho F=\(\frac{n^2+1}{n^2-3}\).Tìm số nguyên n để F có giá trị là số nguyên.

2. Cho G=\(\frac{1}{100^2}+\frac{1}{101^2}+\frac{1}{102^2}+...+\frac{1}{198^2}+\frac{1}{199^2}\). Chứng minh rằng: \(\frac{1}{200}< G< \frac{1}{99}\)

3. Tìm hai số biết tổng của chúng bằng 162 và ƯCLN của chúng là 18

Câu 4: (5,5 điểm) Cho hai góc AOx và góc BOx có chung cạnh Ox và hai góc này không kề nhau

1. Cho \(\widehat{AOx}=38^o\)và \(\widehat{BOx}=112^o\).

a) Trong ba tia OA,OB,Ox tia nào nằm giữa hai tia còn lại? Vì sao?

b) Tính \(\widehat{AOB}\).

c) Vẽ tia phân giác OM của \(\widehat{AOB}\). Tính \(\widehat{MOx}\)

2. Cho \(\widehat{AOx}=m\)và \(\widehat{BOx}=n\), trong đó \(0^o< m+n< 180^o\). Tìm điều kiện giữa \(m\)và \(n\)để tia OA nằm giữa hai tia OM và Ox. Khi đó hãy tính \(\widehat{MOx}\)theo \(m\)và \(n\).

Câu 5: (1,5 điểm) Cho bốn số nguyên dương \(a,b,c,d\)thoả mãn đẳng thức \(a^2+b^2=c^2+d^2\). Chứng minh rằng tổng \(a+b+c+d\)là một hợp số

 

 

 

0
13 tháng 2 2019

a) ta có : 3/4 = -x/4

=> -x = 3×4/4

=> -x =3

=> x = -3

Mặt khác: -x/4 =21/y

Với x = -3, ta có :

-3/4 = 21/y 

=> y = 21×4/-3 = -28

Lại có : 21/y = z/-80

Với y = -28, ta có:

22/-28 = z/-80

=> z = 21×-80/-28 = 60

Vậy x= -3; y = -28; z = 60

b) Ta có: y-2/2 = 18/-2

=> y -2 = 2×18/-2 

=> y-2 = -18 => y = -16

Lại có : x/3 = y-2/2

Với y = -16, ta có:

x/3 = -16-2/2

=> x/3 = -18/2

=> x = 3×-18/2 => x = -27

Vậy x = -27; y = -16

4 tháng 4 2018

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{99}\right)\)

\(A=\frac{1}{2}.\frac{98}{99}\)

\(A=\frac{49}{99}\)

4 tháng 4 2018

=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)

=1-\(\frac{1}{99}\)

=\(\frac{98}{99}\)

3 tháng 5 2015

Gọi phân số đó là \(\frac{a}{b}\) (a,b \(\in\) Z ; b \(\ne\) 0)

Ta có: \(\frac{a}{b}=\frac{8}{18}=\frac{4}{9}\) \(\Rightarrow\) a = 4k    ;     b = 9k             (k \(\in\) N*)

                 a . b = 4k . 9k = 36k2 = 324

                              \(\Rightarrow\) k= 9

                              \(\Leftrightarrow\) k = 3

Vậy a = 4.3 = 12    ;     b = 9.3 =27

 Phân số phải tìm là \(\frac{12}{27}\)

3 tháng 4 2020

con cho dit

3 tháng 4 2016

a) A = 1/3 - 1/7 + 1/7 - 1/11 +......+1/107 - 1/111

A = 1/3 - 1/111

A = ..............Bạn tự tính nhé!

b) B = 2.(3/15.18 + 3/18.21 +........+3/87.90)

B = 2.(1/15 - 1/18 + 1/18 - 1/21 +........+1/87 - 1/90)

B = 2.(1/15 - 1/90)

B = 2.5/90

B =......Tự tính nhé!

C ; D làm tương tự nhé!

3 tháng 4 2016

yêu cầu là gì vậy

22 tháng 6 2017

n=\(\frac{2}{3}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

n=\(\frac{2}{3}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

n=\(\frac{2}{3}\left(1-\frac{1}{99}\right)\)

n=\(\frac{2}{3}\times\frac{98}{99}\)

n=\(\frac{196}{297}\)

22 tháng 6 2017

Câu \(M=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{2}{99.100}\)Bạn viết \(\frac{3}{99.100}=\frac{2}{99.100}\)mik sửa lại nhé. 

\(M=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.100}\)

\(M=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{100-99}{99.100}\)

\(M=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(M=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{100}\right)\)

\(M=\frac{3}{2}.\frac{99}{100}=\frac{297}{200}\)

\(N=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+....+\frac{3}{97.99}\)

\(N=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+....+\frac{99-97}{97.99}\)

\(N=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{99}\right)\)

\(N=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{99}\right)\)

\(\Rightarrow N=\frac{3}{2}.\frac{98}{99}=\frac{49}{33}\)

Ta thấy : \(\frac{297}{200}>\frac{49}{33}\Rightarrow M>N\)

12 tháng 6 2018

Đặt \(\frac{a}{b}=k\)

Theo bài ra ta có:

\(k=\left(\frac{7}{18}+\frac{11}{8}+k\right)\div3\)

\(\Rightarrow3k=\frac{127}{72}+k\)

\(\Rightarrow2k=\frac{127}{72}\)

\(\Leftrightarrow k=\frac{127}{144}\)

Vậy, \(\frac{a}{b}=\frac{127}{144}\)

17 tháng 5 2020

Ta có: \(\frac{a}{b}=\left(\frac{7}{18}+\frac{11}{8}+\frac{a}{b}\right):3\)

\(\Leftrightarrow3.\frac{a}{b}=\frac{7}{18}+\frac{11}{8}+\frac{a}{b}\)\(\Leftrightarrow3.\frac{a}{b}-\frac{a}{b}=\frac{7}{18}+\frac{11}{8}\)

\(\Leftrightarrow2.\frac{a}{b}=\frac{127}{72}\)\(\Leftrightarrow\frac{a}{b}=\frac{127}{144}\)

Vậy \(\frac{a}{b}=\frac{127}{144}\)