\(\dfrac{101+100+99+98+....+1}{101-100+99-98+....+3-2+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

Ta có:

A = \(\dfrac{101+100+99+98+...+1}{101-100+99-98+...+3-2+1}\)

= \(\dfrac{101+\left(100+1\right)+\left(99+2\right)+...+\left(51+50\right)}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)

= \(\dfrac{101+101+101+...+101}{1+1+1+...+1}\) (51 số 101 và 51 số 1)

= \(\dfrac{101.51}{51}\)

= 101

Vậy A = 101

29 tháng 4 2017

Gọi \(101+100+99+98+...+3+2+1\)\(A\)

Gọi \(101-100+99-98+...+3-2+1\)\(B\)

Ta có:

\(A=1+2+3+...+98+99+100+101\\ =\dfrac{101\cdot\left(101+1\right)}{2}\\ =\dfrac{101\cdot102}{2}\\ =5151\)

\(B=101-100+99-98+...+3-2+1\\ =\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1\\ =1+1+...+1+1\)

(có 51 số hạng 1)
\(=51\cdot1\\ =51\)
\(\dfrac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}=\dfrac{A}{B}=\dfrac{5151}{51}=101\)
3 tháng 5 2017

C.ơn bạn nha hehe

4 tháng 1 2018

\(A=\dfrac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}.\)

\(A=\dfrac{\left[\dfrac{\left(101-1\right)}{1}+1\right]\left[\dfrac{101+1}{2}\right]}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}.\)

\(A=\dfrac{101.51}{1+1+1+...+1+1}\) (có 51 số 1).

\(A=\dfrac{5151}{51}=101.\)

Vậy \(A=101.\)

29 tháng 1 2015

Ta thấy: 101+100+99+98+...+3+2+1 có(101-1+1=101 số) tổng của tử số của A là:

(101+1).101:2=5151.Mẫu số cũng có số hạng bằng số hạng tử số,có số cặp ở mẫu là:101:2=50(dư 1 số)(số 1).Vậy tổng mẫu số của A là : (101-100).50+1=51.Vậy A=5151:51=101

 

     

 

29 tháng 1 2015

ai hoc gioi giai ho cho minh voi

14 tháng 9 2016

sửa lại đề : 101+100+99+98+......+3+2+1/101-100+99-98+.....+3-2+1

tử số là :

(101+1).101:2=.....         (tự tih)

ta có mẫu số : (101 - 100)+(99 -98)+......+(3-2)+1

                   = 1+1+.....+1+1

mà mẫu số có 101 số => mấu số =101

=> phân số đó = 5151/101=51

ủng hộ nha

14 tháng 9 2016

\(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)

\(=\frac{\left(101+1\right).101:2}{1+1+1+...+1}\)

51 số 1

\(=\frac{5151}{51}\)

\(=101\)

8 tháng 7 2015

\(A=\frac{\left(101+1\right).\frac{\left(101-1+1\right)}{2}}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}=\frac{5151}{1.\frac{\left(101-2+1\right)}{2}+1}=\frac{5151}{51}=101\)

25 tháng 5 2019

a) \(A=\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}=\frac{\left[\left(101+1\right).101\right]:2}{2+2+2+...+2+1}\)

\(=\frac{102.101:2}{2.50+1}=\frac{51.101}{100+1}=\frac{5151}{101}=51.\)