\(A=\sin^210'+\sin^220'+....+\sin^270'+\sin^280'\)

Note: ' là độ

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

áp dụng  sin2a=cos2(90-a)

và sin2a+cos2a=1

10 tháng 7 2016

áp dụng cả a,b đó,,,,, coi

11 tháng 9 2016

Ta có A =( \(\sin^210\:+\sin^280\)) + (\(\sin^220+\sin^270\)) + (\(\sin^230+\sin^260\)) + (\(\sin^240+\sin^250\))

= (\(\sin^210+\cos^210\)) + (\(\sin^220+\cos^220\)) + (\(\sin^230+\cos^230\)) + (\(\sin^240+\cos^240\))

= 1 + 1 + 1 + 1 = 4

8 tháng 8 2018

\(A=sin^210+sin^220+sin^230+sin^280+sin^270+sin^260=sin^210+sin^220+sin^230+cos^210+cos^220+cos^230=1+1+1=3\)\(B=\left(1+tan^2\alpha\right)\left(1-sin^2\alpha\right)+\left(1+cot^2\alpha\right)\left(1-cos^2\alpha\right)=\dfrac{1}{cos^2\alpha}.cos^2\alpha+\dfrac{1}{sin^2\alpha}.sin^2\alpha=1+1=2\)

24 tháng 8 2019

bài 2 là tính tan C nhá

mik vt nhầm

15 tháng 8 2017

a, \(\cos^215+\cos^225+\cos^235+\cos^245+\sin^235+\sin^225+\sin^215\)

=\(\left(\cos^215+\sin^215\right)+\left(\cos^225+\sin^225\right)+\left(\cos^235+\sin^235\right)+\cos^245\)

=\(1+1+1+\frac{1}{2}=\frac{7}{2}\)

b.\(\sin^210-\sin^220-\sin^230-\sin^240-\cos^240-\cos^220+\cos^210\)

=\(\left(\sin^210+\cos^210\right)-\left(\sin^220+\cos^220\right)-\left(\sin^240+\cos^240\right)-\sin^230\)

=\(1-1-1-\frac{1}{4}=-\frac{5}{4}\)

c,\(\sin15+\sin75-\sin75-\cos15+\sin30=\sin30=\frac{1}{2}\)

21 tháng 8 2017

CÁC BN CHỈ CẦN LÀM CHO MIK CÂU D,E,F LÀ ĐC RỒI

21 tháng 8 2017

d/ \(sin35+sin67-cos23-cos55\)

\(=sin35+sin67-sin67-sin35=0\)

e/ \(cos^220+cos^240+cos^250+cos^270\)

\(=cos^220+cos^240+sin^220+sin^240=1+1=2\)

f/ Đề sai.

a: \(=\left(\sin^210^0+\sin^280^0\right)+\left(\sin^220^0+\sin^270^0\right)+\left(\sin^230^0+\sin^260^0\right)+\left(\sin^240^0+\sin^250^0\right)\)

=1+1+1+1

=4

b: \(=\left(\cos^25^0+\cos^285^0\right)+\left(\cos^215^0+\cos^275^0\right)+\left(\cos^225^0+\cos^265^0\right)+\left(\cos^235^0+\cos^255^0\right)+\cos^245^0\)

\(=1+1+1+1+\dfrac{1}{2}=4+\dfrac{1}{2}=\dfrac{9}{2}\)